Skip to main content Accessibility help
×
Home

Aerosol synthesis of phase pure iodine/iodic biocide microparticles

  • Tao Wu (a1), Andrew SyBing (a1), Xizheng Wang (a1) and Michael R. Zachariah (a1)

Abstract

High iodine containing oxides are of interest as biocidal components in energetic applications requiring fast exothermic reactions with metallic fuels. Aerosol techniques offer a convenient route and potentially direct route for preparation of small particles with high purity, and are a method proven to be amenable and economical to scale-up. Here, we demonstrate the synthesis of various iodine oxide/iodic acid microparticles by a direct one-step aerosol method from iodic acid. By varying temperature and humidity, we produced near phase pure δ-HIO3, HI3O8, and I2O5 as determined by X-ray diffraction. δ-HIO3, a previously unknown phase, was confirmed in this work. In addition, scanning electron microscopy was used to examine the morphology and size of those prepared iodine oxide/iodic acid particles and the results show that all particles have an irregularly spherical shape. Thermogravimetric/differential scanning calorimetry measurement results show that HIO3 dehydrates endothermically to HI3O8, and then to I2O. I2O5 decomposes to I2 and O2.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: mrz@umd.edu

Footnotes

Hide All
Contributing Editor: Gary L. Messing

Footnotes

References

Hide All
1. Chapman, R-D., Thompson, D., Ooi, G., Wooldridge, D., Cash, P-N., and Hollins, R-A.: Presented at the Joint 66th Southwest and 62nd Southeast Regional Meeting of the American Chemical Society, New Orleans, LA, December, 2012.
2. Sullivan, K-T., Wu, C-W., Piekiel, N-W., Gaskell, K., and Zachariah, M-R.: Synthesis and reactivity of nano-Ag2O as an oxidizer for energetic systems yielding antimicrobial products. Combust. Flame 160(2), 438 (2013).
3. Schoenitz, M., Ward, T-S., and Dreizin, E-L.: Fully dense nanocomposite energetic powders prepared by arrested reactive milling. Proc. Combust. Inst. 30, 2071 (2005).
4. Blobaum, K-J., Wagner, A-J., Plitzko, J-M., Van Heerden, D., Fairbrother, D-H., and Weihs, T-P.: Investigating the reaction path and growth kinetics in CuO x /Al multilayer foils. J. Appl. Phys. 94, 2923 (2003).
5. Zhang, K., Rossi, C., and Ardila Rodriguez, G-A.: Development of a nano-Al/CuO based energetic material on silicon substrate. Appl. Phys. Lett. 91, 113117 (2007).
6. Umbrajkar, S-M., Seshadri, S., Schoenitz, M., Hoffmann, V-K., and Dreizin, E-L.: Aluminum-rich Al–MoO3 nanocomposite powders prepared by arrested reactive milling. J. Propul. Power 24, 192198 (2008).
7. Ward, T-S., Chen, W., Schoenitz, M., Dave, R-N., and Dreizin, E-L.: A study of mechanical alloying processes using reactive milling and discrete element modeling. Acta Mater. 53, 29092918 (2005).
8. Kim, S-H. and Zachariah, M-R.: Enhancing the rate of energy release from nanoenergetic materials by electrostatically enhanced assembly. Adv. Mater. 16, 1821 (2004).
9. Tillotson, T-M., Gash, A-E., Simpson, R-L., Hrubesh, L-W., Satcher, J-H. Jr., and Poco, J-F.: Nanostructured energetic materials using sol−gel methodologies. J. Non-Cryst. Solids 285, 338 (2001).
10. Seo, H-S., Kim, J-K., Kim, J-W., Kim, H-S., and Koo, K-K.: Thermal behavior of Al/MoO3 xerogel nanocomposites. J. Ind. Eng. Chem. 20, 189 (2014).
11. Rossi, C., Zhang, K., Esteve, D., Alphonse, P., Tailhades, P., and Vahlas, C.: Nanoenergetic materials for MEMS: A review. J. Microelectromech. Syst. 16, 919 (2007).
12. Malchi, J-Y., Foley, T-J., and Yetter, R-A.: Electrostatically selfassembled nanocomposite reactive microspheres. ACS Appl. Mater. Interfaces 1, 2420 (2009).
13. Wang, H-Y., Jian, G-Q., Egan, G-C., and Zachariah, M-R.: Assembly and reactive properties of Al/CuO based nanothermite microparticles. Combust. Flame 161, 2203 (2014).
14. Sullivan, K., Pickiel, N., Chowdhury, S., Wu, C., Johnson, C., and Zachariah, M.R.: Ignition and combustion characteristics of nanoscale Al/AgIO3: A potential energetic biocidal system. Combust. Sci. Technol. 183, 205 (2011).
15. Zhou, W., Orr, M-W., Lee, V-T., and Zachariah, M-R.: Synergistic effects of ultrafast heating and gaseous chlorine on the neutralization of bacterial spores. Chem. Eng. Sci. 144, 39 (2016).
16. Zhou, W., Orr, M-W., Jian, G., Watt, S., Lee, V-T., and Zachariah, M-R.: Inactivation of bacterial spores subjected to sub-second thermal stress. Chem. Eng. J. 279, 578 (2015).
17. Tabit, F-T. and Buys, E.: The effects of wet heat treatment on the structural and chemical components of Bacillus sporothermodurans spores. Int. J. Food Microbiol. 140, 207 (2010).
18. Zhang, S., Schoenitz, M., and Dreizin, E-L.: Mechanically alloyed Al–I composite materials. J. Phys. Chem. Solids 71, 1213 (2010).
19. Zhang, S., Schoenitz, M., and Dreizin, E-L.: Iodine release, oxidation, and ignition of mechanically alloyed Al−I composites. J. Phys. Chem. C 114, 19653 (2010).
20. Zhang, S., Badiola, C., Schoenitz, M., and Dreizin, E-L.: Oxidation, ignition, and combustion of Al·I2 composite powders. Combust. Flame 159, 1980 (2012).
21. Wang, H., Jian, G., Zhou, W., DeLisio, J., Lee, V., and Zachariah, M-R.: Metal iodate-based energetic composites and their combustion and biocidal performance. ACS Appl. Mater. Interfaces 7, 17363 (2015).
22. Johnson, C-E. and Higa, K-T.: Iodine Rich Biocidal Reactive Materials. Presented at MRS Meeting, Boston, 11, 25 (2012).
23. Mulamba, O., Hunt, E-M., and Pantoya, M-L.: Neutralizing bacterial spores using halogenated energetic reactions. Biotechnol. Bioprocess Eng. 18, 918 (2013).
24. He, C., Zhang, J., and Shreeve, J-M.: Dense iodine-rich compounds with low detonation pressures as biocidal agents. Chem. –Eur. J. 19, 7503 (2013).
25. Aly, Y., Zhang, S., Schoenitz, M., Hoffmann, V-K., Dreizin, E-L., Yermakov, M., Indugula, R., and Grinshpun, S-A.: Iodine-containing aluminum-based fuels for inactivation of bioaerosols. Combust. Flame 161, 303 (2014).
26. Feng, J-Y., Jian, G-Q., Liu, Q., and Zachariah, M-R.: Passivated iodine pentoxide oxidizer for potential biocidal nanoenergetic applications. ACS Appl. Mater. Interfaces 5, 8875 (2013).
27. Fischer, D., Klapçtke, T-M., and Stierstorfer, J.: Synthesis and characterization of guanidinium difluoroiodate, [C(NH2)3]+[IF2O2] and its evaluation as an ingredient in agent defeat weapons. Anorg. Allg. Chem. 637, 660 (2011).
28. Martirosyan, K-S.: Nanoenergetic gas-generators: Principles and applications. J. Mater. Chem. 21, 9400 (2011).
29. Little, B-K., Welle, E-J., Emery, S-B., Bogle, M-B., Ashley, V-L., Schrand, A-M., and Lindsay, M-C.: Chemical dynamics of nano-aluminum/iodine (V) oxide. J. Phys. Conf. Ser. 500(5), 052025 (2014).
30. Farley, C. and Pantoya, M.: Reaction kinetics of nanometric aluminum and iodine pentoxide. J. Therm. Anal. Calorim. 102, 609 (2010).
31. Martirosyan, K-S., Wang, L., and Luss, D.: Development of nanoenergetic materials based on Al/I2O5 system. In Nanotech 2010, Vol. 2 (NSTI, Austin, 2010); pp. 137140.
32. Jian, G., Chowdhury, S., Feng, J., and Zachariah, M-R.: The ignition and combustion study of NanoAl and iodine pentoxide thermite. In Joint Meeting - US Sections of the Combustion Institute, Vol. 2 (Curran Associaties Inc., Red Hook, 2013); pp. 12871299.
33. Stahl, K. and Szafranski, M-A.: Single-crystal neutron diffraction study of HIO3 at 295 and 30 K and of DIO3 at 295 K. Acta Chem. Scand. 46, 1146 (1992).
34. Rogers, M-T. and Helmholz, L.: The crystal structure of iodic acid. J. Am. Chem. Soc. 63, 278 (1941).
35. Fischer, A. and Lindsjö, M.: γ-HIO3—A metastable, centrosymmetric polymorph of iodic acid. Z. Anorg. Allg. Chem. 631, 1574 (2005).
36. Little, B-K., Emery, S-B., Nittinger, J-C., Fantasia, R-C., and Lindsay, M-C.: Physiochemical characterization of iodine (V) oxide, Part 1: Hydration rates. Propellants. Explos. Pyrotech. 40, 595 (2015).
37. Fischer, A.: Redetermination of HI3O8, an adduct of formula HIO3·I2O5 . Acta Cryst. E61, i278 (2005).
38. Sorensen, C-M., Li, Q., Xu, H-K., Tang, Z-X., Klabunde, K-J., and Hadjipanayis, G-C.: Aerosol spray pyrolysis synthesis techniques. Nanophase Materials 260, 109 (1994).
39. Liu, L., Zachariah, M-R., Stoliarov, S-I., and Li, J.: Enhanced thermal decomposition kinetics of poly(lactic acid) sacrificial polymer catalyzed by metal oxide nanoparticles. RSC Adv. 5, 101745 (2015).
40. Wikjord, A., Taylor, P., Torgerson, D., and Hachkowski, L.: Thermal behavior of corona-precipitated iodine oxides. Thermochim. Acta 36, 367 (1980).

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Wu supplementary material
Figures S1-S5 and Table S1

 Word (2.1 MB)
2.1 MB

Aerosol synthesis of phase pure iodine/iodic biocide microparticles

  • Tao Wu (a1), Andrew SyBing (a1), Xizheng Wang (a1) and Michael R. Zachariah (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.