Skip to main content Accessibility help

Adhesion strength and nanomechanical characterization of ZnO thin films

  • Vipul Bhardwaj (a1), Rajib Chowdhury (a2) and Rengaswamy Jayaganthan (a3)


The present study was focused to investigate mechanical properties of ZnO thin films deposited on fused quartz substrates at different sputtering deposition pressures (5, 10, 15, and 20 mTorr) using DC sputtering. The crystallinity and microstructure show a marked influence on the mechanical properties of ZnO thin films. The structural evolution of the thin films is in (002) plane and influenced by deposition pressure. The intensity of (002) peak of the films rises initially and decreases with further increasing deposition pressure. The mechanical properties such as hardness, Young’s modulus, and coefficient of friction of ZnO thin films were measured using three-sided pyramidal Berkovich nanoindentation. The adhesion strength of thin films was measured by using scratch test under ramp loading. Load–displacement profile of thin films at continuous indentation cycle without any discontinuity revealed no fracture, cracking event, and defects, which is a consequence of dense microstructure and good adherence of films to the substrate.


Corresponding author

a) Address all correspondence to this author. e-mail:,


Hide All

Contributing Editor: Sam Zhang



Hide All
1. Wang, D. and Bierwagen, G.P.: Sol–gel coatings on metals for corrosion protection. Prog. Org. Coat. 64(4), 327 (2009).
2. Ralib, A.A.M., Nordin, A.N., Malik, N.A., Othman, R., Alam, A.Z., Khan, S., Mortada, O., Crunteanu, A., Chatras, M., and Orlianges, J.C.: A study on controllable aluminium doped zinc oxide patterning by chemical etching for MEMS application. Microsys. Technol. (2016), doi: 10.1007/s00542-015-2783-1.
3. Freund, L.B. and Suresh, S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, U.K., 2004).
4. Daniel, R., Zeilinger, A., Schöberl, T., Sartory, B., Mitterer, C., and Keckes, J.: Microstructure-controlled depth gradients of mechanical properties in thin nanocrystalline films: Towards structure-property gradient functionalization. J. Appl. Phys. 117(23), 235301 (2015).
5. Kelly, P. and Arnell, R.: Magnetron sputtering: A review of recent developments and applications. Vacuum 56(3), 159 (2000).
6. Ohring, M.: Materials Science of Thin Films (Academic Press, San Diego, USA, 2001).
7. Lee, J-E., Kim, H-J., and Kim, D-E.: Assessment of adhesion between thin film and silicon based on a scratch test. J. Mech. Sci. Technol. 24(1), 97 (2010).
8. Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).
9. Tian, Q. and Liu, H.: Electrophoretic deposition and characterization of nanocomposites and nanoparticles on magnesium substrates. Nanotechnology 26(17), 175102 (2015).
10. Chen, J. and Bull, S.: Approaches to investigate delamination and interfacial toughness in coated systems: An overview. J. Phys. D: Appl. Phys. 44(3), 034001 (2010).
11. Znaidi, L.: Sol–gel-deposited ZnO thin films: A review. Mater. Sci. Eng., B 174(1–3), 18 (2010).
12. Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M., Doğan, S., Avrutin, V., Cho, S-J., and Morkoc, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301 (2005).
13. Klingshirn, C.F., Waag, A., Hoffmann, A., and Geurts, J.: Zinc Oxide: From Fundamental Properties Towards Novel Applications (Springer Science & Business Media, New York, USA, 2010).
14. Lu, S., Liao, Q., Qi, J., Liu, S., Liu, Y., Liang, Q., Zhang, G., and Zhang, Y.: The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction. Nano Res. 9(2), 372 (2016).
15. Hong, J., Matsushita, N., and Kim, K.: Effect of dopants and thermal treatment on properties of Ga–Al–ZnO thin films fabricated by hetero targets sputtering system. Thin Solid Films 531, 238 (2013).
16. Coleman, V., Bradby, J., Jagadish, C., Munroe, P., Heo, Y., Pearton, S., Norton, D., Inoue, M., and Yano, M.: Mechanical properties of ZnO epitaxial layers grown on a- and c-axis sapphire. Appl. Phys. Lett. 86(20), 203105 (2005).
17. Lai, C-m., Lin, K-m., and Rosmaidah, S.: Effect of annealing temperature on the quality of Al-doped ZnO thin films prepared by sol–gel method. J. Sol-Gel Sci. Technol. 61(1), 249 (2012).
18. Jian, S-R.: Pop-in effects and dislocation nucleation of c-plane single-crystal ZnO by Berkovich nanoindentation. J. Alloys Compd. 644, 54 (2015).
19. Yau, W-H., Tseng, P-C., Wen, H-C., Tsai, C-H., and Chou, W-C.: Luminescence properties of mechanically nanoindented ZnSe. Microelectron. Reliab. 51(5), 931 (2011).
20. Tayebi, N., Polycarpou, A.A., and Conry, T.F.: Effects of substrate on determination of hardness of thin films by nanoscratch and nanoindentation techniques. J. Mater. Res. 19(6), 1791 (2004).
21. Huang, Y-C. and Chang, S-Y.: Substrate effect on mechanical characterizations of aluminum-doped zinc oxide transparent conducting films. Surf. Coat. Technol. 204(20), 3147 (2010).
22. Sagalowicz, L. and Fox, G.R.: Planar defects in ZnO thin films deposited on optical fibers and flat substrates. J. Mater. Res. 14(5), 1876 (1999).
23. Stokes, A. and Wilson, A.: The diffraction of X-rays by distorted crystal aggregates-I. Proc. Phys. Soc., London, Sect. A 56(3), 174 (1944).
24. Williamson, G. and Smallman, R. III: Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos. Mag. 1(1), 34 (1956).
25. Sun, F. and Froes, F.H.: Synthesis and characterization of mechanical-alloyed Ti–xMg alloys. J. Alloys Compd. 340(1–2), 220 (2002).
26. Ni, W., Cheng, Y-T., Lukitsch, M., Weiner, A.M., Lev, L.C., and Grummon, D.S.: Novel layered tribological coatings using a superelastic NiTi interlayer. Wear 259(7), 842 (2005).
27. Kolodziejczyk, L., Szymanski, W., Batory, D., and Jedrzejczak, A.: Nanotribology of silver and silicon doped carbon coatings. Diamond Relat. Mater. 67, 8 (2016).
28. Fischer-Cripps, A. C.: Nanoindentation (Springer, New York, 2011).
29. Bao, D., Gu, H., and Kuang, A.: Sol–gel-derived c-axis oriented ZnO thin films. Thin Solid Films 312(1), 37 (1998).
30. Kim, M.S., Yim, K.G., Cho, M.Y., Leem, J.Y., Lee, D.Y., Kim, J.S., Kim, J.S., and Son, J.S.: Post-annealing effects on the structural and the optical properties of ZnO thin films grown by using the hydrothermal method. J. Korean. Phys. Soc. 58(3), 515 (2011).
31. Van der Drift, A.: Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Rep. 22(3), 267 (1967).
32. Fujimura, N., Nishihara, T., Goto, S., Xu, J., and Ito, T.: Control of preferred orientation for ZnO x films: Control of self-texture. J. Cryst. Growth 130(1), 269 (1993).
33. Aita, C.R., Purdes, A.J., Lad, K.L., and Funkenbusch, P.D.: The effect of O2 on reactively sputtered zinc oxide. J. Appl. Phys. 51(10), 5533 (1980).
34. Dave, V., Dubey, P., Gupta, H., and Chandra, R.: Influence of sputtering pressure on the structural, optical and hydrophobic properties of sputtered deposited HfO2 coatings. Thin Solid Films 549, 2 (2013).
35. Peng, L-P., He, A-L., Fang, L., and Yang, X-F.: Structure and properties of indium-doped ZnO films prepared by RF magnetron sputtering under different pressures. Rare Met. (2015), doi: 10.1007/s12598-015-0661-8.
36. Coleman, V.A. and Jagadish, C.: Basic Properties and Applications of ZnO. In Zinc Oxide Bulk, Thin Films and Nanostructures (Elsevier Science Ltd., Oxford, 2006); ch. 1.
37. Sung, T., Huang, J., and Chen, H.: Mechanical response of polar/non-polar ZnO under low dimensional stress. Appl. Phys. Lett. 102(24), 241901 (2013).
38. Lin, L-Y., Jeong, M-C., Kim, D-E., and Myoung, J-M.: Micro/nanomechanical properties of aluminum-doped zinc oxide films prepared by radio frequency magnetron sputtering. Surf. Coat. Technol. 201(6), 2547 (2006).
39. Roy, T.K.: Assessing hardness and fracture toughness in sintered zinc oxide ceramics through indentation technique. Mater. Sci. Eng., A 640, 267 (2015).
40. Maharaj, D. and Bhushan, B.: Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation. Beilstein J. Nanotechnol. 5(1), 822 (2014).
41. Bull, S.: Nanoindentation of coatings. J. Phys. D: Appl. Phys. 38(24), R393 (2005).
42. Patriarche, G., Glas, F., Le Roux, G., Largeau, L., Mereuta, A., Ougazzaden, A., and Benchimol, J.: TEM study of the morphological and compositional instabilities of InGaAsP epitaxial structures. J. Cryst. Growth 221(1), 12 (2000).
43. Navamathavan, R., Kim, K-K., Hwang, D-K., Park, S-J., Hahn, J-H., Lee, T.G., and Kim, G-S.: A nanoindentation study of the mechanical properties of ZnO thin films on (0001) sapphire. Appl. Surf. Sci. 253(2), 464 (2006).
44. Schuh, C., Nieh, T., and Kawamura, Y.: Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17(07), 1651 (2002).
45. Misra, D.K., Sohn, S.W., Kim, W.T., and Kim, D.H.: Rate-dependent serrated flow and plastic deformation in Ti45Zr16Be20Cu10Ni9 bulk amorphous alloy during nanoindentation. Sci. Technol. Adv. Mater. 9(4), 45004 (2016).
46. Kucheyev, S., Bradby, J., Williams, J., Jagadish, C., and Swain, M.: Mechanical deformation of single-crystal ZnO. Appl. Phys. Lett. 80(6), 956 (2002).
47. Fang, T-H., Chang, W-J., and Lin, C-M.: Nanoindentation characterization of ZnO thin films. Mater. Sci. Eng., A 452, 715 (2007).
48. Li, J., Van Vliet, K.J., Zhu, T., Yip, S., and Suresh, S.: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418(6895), 307 (2002).
49. Gayle, A.J. and Cook, R.F.: Mapping viscoelastic and plastic properties of polymers and polymer-nanotube composites using instrumented indentation. J. Mater. Res. 31(15), 2347 (2016).
50. Musil, J.: Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surf. Coat. Technol. 207, 50 (2012).
51. Blees, M., Winkelman, G., Balkenende, A., and Den Toonder, J.: The effect of friction on scratch adhesion testing: Application to a sol–gel coating on polypropylene. Thin Solid Films 359(1), 1 (2000).
52. Deyneka-Dupriez, N., Herr, U., Fecht, H., Pfrang, A., Schimmel, T., Reznik, B., and Gerthsen, D.: Interfacial adhesion and friction of pyrolytic carbon thin films on silicon substrates. J. Mater. Res. 23(10), 2749 (2008).
53. Zhang, S., Sun, D., Fu, Y., and Du, H.: Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiN/a-SiN x thin films. Thin Solid Films 447, 462 (2004).
54. Benjamin, P. and Weaver, C.: Measurement of adhesion of thin films. Proc. R. Soc. London, Ser. A 254(1277), 163 (1960).
55. Jian, S-R., Teng, I-J., Yang, P-F., Lai, Y-S., Lu, J-M., Chang, J-G., and Ju, S-P.: Surface morphological and nanomechanical properties of PLD-derived ZnO thin films. Nanoscale Res. Lett. 3(5), 186 (2008).
56. Bhushan, B. and Li, X.: Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices. J. Mater. Res. 12(1), 54 (1997).
57. Thornton, J.A.: The microstructure of sputter-deposited coatings. J. Vac. Sci. Technol., A 4(6), 3059 (1986).


Related content

Powered by UNSILO

Adhesion strength and nanomechanical characterization of ZnO thin films

  • Vipul Bhardwaj (a1), Rajib Chowdhury (a2) and Rengaswamy Jayaganthan (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.