Skip to main content Accessibility help
×
Home

Adhesion of polymer–inorganic interfaces by nanoindentation

  • Min Li (a1), C. Barry Carter (a1), Marc A. Hillmyer (a2) and William W. Gerberich (a3)

Abstract

Nanoindentation combined with atomic force microscopy was applied to measure the fracture toughness of polystyrene/glass interfaces. Film delamination occurs when the inelastic penetration depth approximately equals or exceeds the film thickness. The delamination size was accurately measured using atomic force microscopy. Using multilayer indentation and annular-plate analyses, the interfacial fracture toughness was then assessed. The values obtained from the two analyses are in good agreement with the fracture toughness of the interface being approximately 350 mJ/m2. By appropriate fracture surface characterization, it was shown that fracture occurs along the polystyrene/glass interface. Crack arrest marks were observed, and their possible cause discussed. On the basis of the morphology of the fracture surface, the fracture toughness was also evaluated using a process zone analysis. The result agrees well with those obtained from the other two analyses.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: wgerb@tc.umn.edu

References

Hide All
1.Grove, N.R., Kohl, P. A., Allen, S.A.B., Jayaraman, S., and Shick, R., J. Polym. Sci., Part B: Polym. Phys. 37, 3003 (1999).
2.Liou, H., Ho, P. S., and McKerrow, A., “The Thermal and Mechanical Properties of Perfluorocyclobutate Aromatic Ether Polymers,” in Dielectric Material Integration for Microelectronics, edited by Brown, W. D., Ang, S. S., Loboda, M., Sammakia, B., Singh, R., and Rathore, H.S. (The Electrochemical Society, Inc., Pennington, NJ, 1998), p. 113.
3.Ree, M., Park, Y. H., Shin, T. J., Nunes, T. L., and Volksen, W., Polymer 41, 2105 (2000).
4.Tummala, R. R., Rymaszewski, E. J., and Klopfenstein, A.G.Microelectronics Packaging Handbook, edited by Tummala, R. R., Rymaszewski, E. J., and Klopfenstein, A. G., (Chapman & Hall, New York, 1997).
5.Ree, M., Goh, W. H., Park, J-W., Lee, M-H., and Rhee, S. B., in Low-Dielectric Constant Materials—Synthesis and Applications in Microelectronics, edited by Lu, T-M., Murarka, S. P., Kuan, T. K., and Ting, C.H (Mater. Res. Soc. Symp. 381, Pittsburgh, PA, 1995), p. 71
6.Chen, Z., Cotterell, B., and Chen, W. T., Surf. Interface Anal. 28, 146 (1999).
7.Marshall, D.B. and Evans, A. G., J. Appl. Phys. 56, 2632 (1984).
8.Matthewson, M. J., Appl. Phys. Lett. 49, 1426 (1986).
9.Rosenfeld, L. G., Ritter, J. E., Lardner, T. J., and Lin, M. R., J. Appl. Phys. 67, 3291 (1990).
10.Kriese, M. D., Moody, N. R., and Gerberich, W. W., J. Mater. Res. 14, 3007 (1999).
11.Swadener, J.G. and Liechti, K. M., J. Appl. Mech. 65, 25 (1998).
12.Sharma, R., Lin, J., and Drye, J., J. Adhes. 40, 257 (1993).
13.Dai, C., Kramer, E. J., Washiyama, J., and Hui, C., Macromolecules 29, 7536 (1996).
14.Thouless, M. D., Acta Metall. 36, 3131 (1988).
15.Tymiak, N. I., Li, M., Volinsky, A. A., Katz, Y., and Gerberich, W. W., in Materials Reliability in Microelectronics IX, edited by Volkert, C. A., Verbruggen, A. H., and Brown, D.D. (Mater. Res. Soc. Symp. Proc. 563, Warrendale, PA, 1999), p. 269.
16.Turner, M.R. and Evans, A. G., Acta Mater. 44, 863 (1996).
17.Kriese, M. D., Moody, N. R., and Gerberich, W. W., J. Mater. Res. 14, 3019 (1999).
18.Bagchi, A. and Evans, A. G., Thin Solid Films 286, 203 (1996).
19.Smith, J. W., Kramer, E. J., Xiao, F., and Hui, C., J. Mater. Sci. 28, 4234 (1993).
20.Wu, T. W., J. Mater. Res. 6, 407 (1991).
21.Bhushan, B., Kulkarni, A. V., Bonin, W., and Wyrobek, J. T., Philos. Mag. A 74, 1117 (1996).
22.Oliver, W.C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).
23.Gerberich, W. W., Yu, W., Kramer, D., Strojny, A., Bahr, D., Lilleodden, E., and Nelson, J., J. Mater. Res. 13, 421 (1998).
24.Li, M., Carter, C. B., and Gerberich, W. W., (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), p. Q7.21.1.
25.Hutchinson, J.W. and Suo, Z., Mixed Mode Cracking in Layered Materials, edited by Hutchinson, J.W. and Hu, T. Y., (Academic Press, New York), Adv. Appl. Mech. 29, 63 (1991).
26.Hoffman, W. R., The Mechanical Properties of Thin Condensed Films, in Physics of Thin Films, edited by Hass, G. and Thun, R.E. (Academic, New York, 1966), Vol. 3, p. 211.
27.Callister, W. D., Jr., Materials Science and Engineering an Introduction (John Wiley & Sons, New York, 1999).
28.Brandrup, J. and Immergut, E.H.Polymer Handbook, edited by Brandrup, J. and Immergut, E. H., (Wiley-Interscience, New York, 1989).
29.Marsh, D. M., Proc. R. Soc. A 279, 420 (1963).
30.Pethica, J. B., Hutchings, R., and Oliver, W. C., Philos. Mag. A 48, 593 (1983).
31.Ma, Q. and Clarke, D. R., J. Mater. Res. 1C, 853 (1995).
32.Tymiak, N. and Gerberich, W., Adhesion and Interfacial Degradation, in ASM Handbook Volume 8 Mechanical Testing and Evaluation, edited by Kuhn, H. and Medlin, D. (ASM International, Materials Park, OH, 2000), p. 298.
33.Swadener, J. G., Liechti, K. M., and Lozanne, A.L.d., J. Mech. Phys. Solids 47, 223 (1999).
34.Dupre, A., Mechanical Theory of Heat (Gauthier-Villars, Paris, France, 1869).
35.Reiter, G., Langmuir 9, 1344 (1993).
36.Volinsky, A.A. and Gerberich, W. W., in Materials Reliability in Microelectronics IX, edited by Volkert, C. A., Verbruggen, A. H., and Brown, D.D. (Mater. Res. Soc. Symp. Proc. 563, Warrendale, PA, 1999), p. 275.
37.Volinsky, A. A., The Role of Geometry and Plasticity in Thin Ductile Film Adhesion, Ph. D. Thesis, University of Minnesota (2000).
38.Argon, A. S., Hannoosh, J. G., and Salama, M. M., Initiation and Growth of Crazes in Glassy Polymers, in Fracture 1977 Advances in Research on the Strength and Fracture of Materials Vol. 1, edited by Taplin, D.M.R. (Pergamon Press Inc., New York, 1978), p. 445.
39.Israel, S. J., Kantamneni, C. S., and Gerberich, W. W., A Dugdale-Barenblatt Equilibrium Model for Crazes in Glassy Polymers, in Mechanical Behavior of Materials, edited by Miller, K.J. and Smith, R.F. (Pergamon Press, New York, 1979), Vol. V3, p. 393.
40.Gerberich, W. W., Interaction of Microstructure and Mechanism in Defining KIc, KIscc or △Kth Values, in Fracture: Interactions of Microstructure, Mechanisms and Mechanics, edited by Wells, J.M. and Landes, J.D. (Metallurgical Society of AIME, Warrendale, PA, 1984), p. 49.
41.Gerberich, W. W., Int. J. Fract. 13, 535 (1977).
42.Dugdale, D. S., J. Mech. Phys. Solids 8, 100 (1960).
43.Barenblatt, G. I., Adv. Appl. Mech. 7, 55 (1962).
44.Ward, I. M., Mechanical Properties of Solid Polymers, 2nd ed. (John Wiley & Sons, Chichester, United Kingdom, 1983).
45.Nielsen, L.E. and Landel, R. F., Mechanical Properties of Polymers and Composites (Marcel Dekker, Inc., New York, 1994).
46.Jackson, G.B. and Ballman, R. L., SPE J. 16, 1147 (1960).
47.Suo, Z. and Hutchinson, J. W., Int. J. Fract. 43, 1 (1990).
48.Evans, A. G., Dalgleish, B. J., He, M., and Hutchinson, J. W., Acta Metall. 37, 3249 (1989).
49.Liechti, K.M. and Chai, Y-S., J. Appl. Mech. 58, 680 (1991).
50.Strojny, A., Moody, N. R., Emerson, J. A., Even, W. R. Jr, and Gerberich, W. W., in Interfaces, Adhesion and Processing in Polymer Systems, edited by Anastasiadis, S. H., Karim, A., and Ferguson, G.S. (Mater. Res. Soc. Symp. Proc. 629, Warrendale, PA, 2000), p. FF5.13.1.
51.Begley, M.R. and Hutchinson, J. W., J. Mech. Phys. Solids 46, 2049 (1998).
52.Grunlan, J. C., Xia, X., Rowenhorst, D., and Gerberich, W. W., Rev. Sci. Instrum. (in press).

Related content

Powered by UNSILO

Adhesion of polymer–inorganic interfaces by nanoindentation

  • Min Li (a1), C. Barry Carter (a1), Marc A. Hillmyer (a2) and William W. Gerberich (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.