Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T04:53:11.112Z Has data issue: false hasContentIssue false

Adhesion behavior of calcia–magnesia–alumino–silicates on gadolinia-yttria-stabilized zirconia composite thermal barrier coatings

Published online by Cambridge University Press:  03 August 2020

Clara Mock*
Affiliation:
SURVICE Engineering, Belcamp, Maryland21017, USA
Michael J. Walock
Affiliation:
US Army Combat Capabilities Development Command – Army Research Laboratory, Aberdeen Proving Ground, Maryland21005, USA
Anindya Ghoshal
Affiliation:
US Army Combat Capabilities Development Command – Army Research Laboratory, Aberdeen Proving Ground, Maryland21005, USA
Muthuvel Murugan
Affiliation:
US Army Combat Capabilities Development Command – Army Research Laboratory, Aberdeen Proving Ground, Maryland21005, USA
Marc Pepi
Affiliation:
US Army Combat Capabilities Development Command – Army Research Laboratory, Aberdeen Proving Ground, Maryland21005, USA
*
a)Address all correspondence to this author. e-mail: clara.m.mock@gmail.com
Get access

Abstract

Military operations occurring in particle-laden environments have resulted in aircraft incidents and loss of life due to sand ingestion into the engine. Sand melts in the hot combustion environment and deposits as glassy calcia–magnesia–alumino–silicates (CMAS) which leads to rapid performance degradation due to clogged air pathways in the engine. A novel, composite thermal barrier coating (TBC) consisting of yttria-stabilized zirconia (YSZ) blended with gadolinia is proposed that combines the excellent thermo-mechanical properties of YSZ together with the CMAS resistance of rare-earth oxides. YSZ was blended with 2, 8, 17, and 32 vol% gadolinia and tested under simulated engine-relevant conditions. The presence of gadolinia in the composite coating reduced the adhesion of the CMAS, and at 32 vol% gadolinia addition, the CMAS was completely delaminated. A possible CMAS adhesion mitigating mechanism is discussed. This work demonstrated the capability of a new composite TBC to significantly reduce CMAS adhesion.

Type
Invited Paper
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Perepezko, J.H.: The hotter the engine, the better. Science 326, 1068 (2009).CrossRefGoogle Scholar
Smialek, J.L., Archer, F.A., and Garlick, R.G.: Turbine airfoil degradation in the persian gulf war. JOM 46, 39 (1994).CrossRefGoogle Scholar
Borom, M.P., Johnson, C.A., and Peluso, L.A.: Role of environmental deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surf. Coat. Technol. 86–87, 116 (1996).CrossRefGoogle Scholar
Padture, N.P., Gell, M., and Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280 (2002).CrossRefGoogle ScholarPubMed
Evans, A.G., Mumm, D.R., Hutchinson, J.W., Meier, G.H., and Pettit, F.S.: Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater. Sci. 46, 505 (2001).CrossRefGoogle Scholar
Hutchinson, J.W. and Evans, A.G.: On the delamination of thermal barrier coatings in a thermal gradient. Surf. Coat. Technol. 149, 179 (2002).CrossRefGoogle Scholar
Aygun, A., Vasiliev, A.L., Padture, N.P., and Ma, X.: Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater. 55, 6734 (2007).CrossRefGoogle Scholar
Krämer, S., Yang, J., and Levi, C.G.: Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts. J. Am. Ceram. Soc. 91, 576 (2008).CrossRefGoogle Scholar
Drexler, J.M., Aygun, A., Li, D., Vaßen, R., Steinke, T., and Padture, N.P.: Thermal-gradient testing of thermal barrier coatings under simultaneous attack by molten glassy deposits and its mitigation. Surf. Coat. Technol. 204, 2683 (2010).CrossRefGoogle Scholar
Rai, A.K., Bhattacharya, R.S., Wolfe, D.E., and Eden, T.J.: CMAS-resistant thermal barrier coatings (TBC). Int. J. Appl. Ceram. Technol. 7, 662 (2010).CrossRefGoogle Scholar
Levi, C.G., Hutchinson, J.W., Vidal-Sétif, M.-H., and Johnson, C.A.: Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull. 37, 932 (2012).CrossRefGoogle Scholar
Hiltz, R.H.: Coating of Refractory Metals with Metal Modified Oxides. Northrup Grumman Space and Mission System Corp., 1968.Google Scholar
Stecura, S.: Thermal barrier coating system. In U. P. a. T. Office (National Aeronautics and Space Administration, 1983).Google Scholar
Li, L., Hitchman, N., and Knapp, J.: Failure of thermal barrier coatings subjected to CMAS attack. J. Therm. Spray Technol. 19, 148 (2010).CrossRefGoogle Scholar
Peng, H., Wang, L., Guo, L., Miao, W., Guo, H., and Gong, S.: Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits. Prog. Nat. Sci.: Mater. Int. 22, 461 (2012).CrossRefGoogle Scholar
Naraparaju, R., Schulz, U., Mechnich, P., Döbber, P., and Seidel, F.: Degradation study of 7wt.% yttria stabilised zirconia (7YSZ) thermal barrier coatings on aero-engine combustion chamber parts due to infiltration by different CaO–MgO–Al2O3–SiO2 variants. Surf. Coat. Technol. 260, 73 (2014).CrossRefGoogle Scholar
Jackson, R.W., Zaleski, E.M., Poerschke, D.L., Hazel, B.T., Begley, M.R., and Levi, C.G.: Interaction of molten silicates with thermal barrier coatings under temperature gradients. Acta Mater. 89, 396 (2015).CrossRefGoogle Scholar
Kakuda, T.R., Levi, C.G., and Bennett, T.D.: The thermal behavior of CMAS-infiltrated thermal barrier coatings. Surf. Coat. Technol. 272, 350 (2015).CrossRefGoogle Scholar
Krause, A.R., Garces, H.F., Dwivedi, G., Ortiz, A.L., Sampath, S., and Padture, N.P.: Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings. Acta Mater. 105, 355 (2016).CrossRefGoogle Scholar
Kang, Y.X., Bai, Y., Bao, C.G., Wang, Y., Chen, H.Y., Gao, Y., and Li, B.Q.: Defects/CMAS corrosion resistance relationship in plasma sprayed YPSZ coating. J. Alloys Compd. 694, 1320 (2017).CrossRefGoogle Scholar
Li, B., Chen, Z., Zheng, H., Li, G., Li, H., and Peng, P.: Wetting mechanism of CMAS melt on YSZ surface at high temperature: First-principles calculation. Appl. Surf. Sci. 483, 811 (2019).CrossRefGoogle Scholar
Drexler, J.M., Chen, C.-H., Gledhill, A.D., Shinoda, K., Sampath, S., and Padture, N.P.: Plasma sprayed gadolinium zirconate thermal barrier coatings that are resistant to damage by molten Ca–Mg–Al–silicate glass. Surf. Coat. Technol. 206, 3911 (2012).CrossRefGoogle Scholar
Vaßen, R., Traeger, F., and Stöver, D.: New thermal barrier coatings based on pyrochlore/YSZ double-layer systems. Int. J. Appl. Ceram. Technol. 1, 351 (2004).CrossRefGoogle Scholar
Mahade, S., Curry, N., Björklund, S., Markocsan, N., Nylén, P., and Vaßen, R.: Erosion performance of gadolinium irconate-based thermal barrier coatings processed by suspension plasma spray. J. Therm. Spray Technol. 26, 108 (2017).CrossRefGoogle Scholar
Murugan, M., Ghoshal, A., Walock, M., Nieto, A., Bravo, L., Barnett, B., Pepi, M., Swab, J., Pegg, R.T., Rowe, C., Zhu, D.M., and Kerner, K.: Microstructure based material-sand particulate interactions and assessment of coatings for high temperature turbine blades. In ASME Turbo Expo 2017: Turbine Technical Conference and Exposition (2017), p. V02DT48A009.Google Scholar
Nieto, A., Walock, M., Ghoshal, A., Zhu, D., Gamble, W., Barnett, B., Murugan, M., Pepi, M., Rowe, C., and Pegg, R.: Layered, composite, and doped thermal barrier coatings exposed to sand laden flows within a gas turbine engine: Microstructural evolution, mechanical properties, and CMAS deposition. Surf. Coat. Technol. 349, 1107 (2018).CrossRefGoogle Scholar
Normand, B., Fervel, V., Coddet, C., and Nikitine, V.: Tribological properties of plasma sprayed alumina–titania coatings: Role and control of the microstructure. Surf. Coat. Technol. 123, 278 (2000).CrossRefGoogle Scholar
Niranatlumpong, P. and Koiprasert, H.: The effect of Mo content in plasma-sprayed Mo-NiCrBSi coating on the tribological behavior. Surf. Coat. Technol. 205, 483 (2010).CrossRefGoogle Scholar
Utu, I.D., Marginean, G., Hulka, I., Serban, V.A., and Cristea, D.: Properties of the thermally sprayed Al2O3–TiO2 coatings deposited on titanium substrate. Int. J. Refract. Met. Hard Mater. 51, 118 (2015).CrossRefGoogle Scholar
Ghoshal, A., Murugan, M., Barnett, B., Walock, M., Pepi, M., and Kerner, K.: Turbomachinery blade thermomechanical interface science and sandphobic coatings research. In 71st Annual Forum of the American Helicopter Society (American Helicopter Society, 2015), p. 225.Google Scholar
Walock, M.J., Barnett, B.D., Ghoshal, A., Murugan, M., Swab, J.J., Pepi, M.S., Hopkins, D., Gazonas, G., Rowe, C., and Kerner, K.: Micro-scale sand particles within the hot-section of a gas turbine engine. In Mechanical Properties and Performance of Engineering Ceramics and Composites XI: Ceramic Engineering and Science Proceedings, J. Salem, and D. Singh eds. (American Ceramics Society, 2017).Google Scholar
Ghoshal, A., Murugan, M., Walock, M.J., Barnett, B.D., Pepi, M.S., Swab, J., Shiao, C.-Y.M., Gazonas, G., Zhu, D., Kerner, K.A., and Rowe, C.: Effect of semi-molten particulate on tailored thermal barrier coatings for gas turbine engine. In AIAA/SAE/ASEE Joint Propulsion Conference (ARC, 2016), p. 4852.CrossRefGoogle Scholar
Wu, J., Guo, H.-b., Gao, Y.-z., and Gong, S.-k.: Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits. J. Eur. Ceram. Soc. 31, 1881 (2011).CrossRefGoogle Scholar
Mohan, P., Yuan, B., Patterson, T., Desai, V., and Sohn, Y.H.: Degradation of yttria stabilized zirconia thermal barrier coatings by molten CMAS (CaO-MgO-Al2O3-SiO2 deposits. Mater. Sci. Forum 595–598, 207 (2008).CrossRefGoogle Scholar
Perrudin, F., Rio, C., Vidal-Sétif, M.H., Petitjean, C., Panteix, P.J., and Vilasi, M.: Gadolinium oxide solubility in molten silicate: Dissolution mechanism and stability of Ca2Gd8(SiO4)6O2 and Ca3Gd2(Si3O9)2 silicate phases. J. Eur. Ceram. Soc. 37, 2657 (2017).CrossRefGoogle Scholar
Poerschke, D.L. and Levi, C.G.: Phase equilibria in the calcia-gadolinia-silica system. J. Alloys Compd. 695, 1397 (2017).CrossRefGoogle Scholar
Abdul-Jabbar, N.M., Poerschke, D.L., Gabbett, C., and Levi, C.G.: Phase equilibria in the zirconia–yttria/gadolinia–silica systems. J. Eur. Ceram. Soc. 38, 3286 (2018).CrossRefGoogle Scholar
Perrudin, F., Vidal-Sétif, M.H., Rio, C., Petitjean, C., Panteix, P.J., and Vilasi, M.: Influence of rare earth oxides on kinetics and reaction mechanisms in CMAS silicate melts. J. Eur. Ceram. Soc. 39, 4223 (2019).CrossRefGoogle Scholar
Lakiza, S., Fabrichnaya, O., Wang, C., Zinkevich, M., and Aldinger, F.: Phase diagram of the ZrO2–Gd2O3–Al2O3 system. J. Eur. Ceram. Soc. 26, 233 (2006).CrossRefGoogle Scholar
Munawar, A.U., Schulz, U., Cerri, G., and Lau, H.: Microstructure and cyclic lifetime of Gd and Dy-containing EB-PVD TBCs deposited as single and double-layer on various bond coats. Surf. Coat. Technol. 245, 92 (2014).CrossRefGoogle Scholar
Kumar, V. and Balasubramanian, K.: Progress update on failure mechanisms of advanced thermal barrier coatings: A review. Prog. Org. Coat. 90, 54 (2016).CrossRefGoogle Scholar
Wright, P.K. and Evans, A.G.: Mechanisms governing the performance of thermal barrier coatings. Curr. Opin. Solid State Mater. Sci. 4, 255 (1999).CrossRefGoogle Scholar
Widjaja, S., Limarga, A.M., and Yip, T.H.: Modeling of residual stresses in a plasma-sprayed zirconia/alumina functionally graded-thermal barrier coating. Thin Solid Films. 434, 216 (2003).CrossRefGoogle Scholar
Kuroda, S. and Clyne, T.W.: The quenching stress in thermally sprayed coatings. Thin Solid Films 200, 49 (1991).CrossRefGoogle Scholar
Wiesner, V.L. and Bansal, N.P.: Mechanical and thermal properties of calcium-magnesium aluminosilicate (CMAS) glass. J. Eur. Ceram. Soc. 35, 2907 (2015).CrossRefGoogle Scholar
Hayashi, H., Saitou, T., Maruyama, N., Inaba, H., Kawamura, K., and Mori, M.: Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents. Solid State Ionics 176, 613 (2005).CrossRefGoogle Scholar
Stecura, S. and Campbell, W.J.: Experimental results and discussion. In Thermal Expansion and Phase Inversion of Rare-Earth Oxides (United States Department of the Interior Bureau of Mines, Washington, 1961); pp. 3032.Google Scholar
Smialek, J.L. and Tubbs, B.K.: Effect of sulfur removal on scale adhesion to PWA 1480. Metall. Mater. Trans. A 26, 427 (1995).CrossRefGoogle Scholar
Smialek, J.L.: Moisture-induced delayed spallation and interfacial hydrogen embrittlement of alumina scales. J. Mater. 58, 29 (2006).Google Scholar
Poerschke, D.L., Barth, T.L., and Levi, C.G.: Equilibrium relationships between thermal barrier oxides and silicate melts. Acta Mater. 120, 302 (2016).CrossRefGoogle Scholar
Demnati, I., Grossin, D., Marsan, O., Bertrand, G., Collonges, G., Combes, C., Parco, M., Braceras, I., Alexis, J., Balcaen, Y., and Rey, C.: Comparison of physical-chemical and mechanical properties of chlorapatite and hydroxyapatite plasma sprayed coatings. Open Biomed. Eng. J. 9, 42 (2015).CrossRefGoogle ScholarPubMed
Khoddami, A.M., Sabour, A., and Hadavi, S.M.M.: Microstructure formation in thermally-sprayed duplex and functionally graded NiCrAlY/yttria-stabilized zirconia coatings. Surf. Coat. Technol. 201, 6019 (2007).CrossRefGoogle Scholar
Nusair Khan, A., Lu, J., and Liao, H.: Effect of residual stresses on air plasma sprayed thermal barrier coatings. Surf. Coat. Technol. 168, 291 (2003).CrossRefGoogle Scholar
Sadeghi-Fadaki, S.A., Zangeneh-Madar, K., and Valefi, Z.: The adhesion strength and indentation toughness of plasma-sprayed yttria stabilized zirconia coatings. Surf. Coat. Technol. 204, 2136 (2010).CrossRefGoogle Scholar
Mock, C., Walock, M.J., Wright, A., Nieto, A., Ghoshal, A., Murugan, M., and Pepi, M.: Rare-earth oxides blended with yttria-stabilized zirconia thermal barrier coatings for improved resistance to sand adherence and calcia-magnesia-alumino-silicate (CMAS) infiltration. In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition (6, Phoenix, AZ, 2019), p. V006T24A006.Google Scholar
Krämer, S., Yang, J., Levi, C.G., and Johnson, C.A.: Thermochemical interaction of thermal barrier coatings with molten CaO–MgO–Al2O3–SiO2 (CMAS) deposits. J. Am. Ceram. Soc. 89, 3167 (2006).CrossRefGoogle Scholar
Ahlborg, N.L. and Zhu, D.: Calcium–magnesium aluminosilicate (CMAS) reactions and degradation mechanisms of advanced environmental barrier coatings. Surf. Coat. Technol. 237, 79 (2013).CrossRefGoogle Scholar
Mohan, P., Yao, B., Patterson, T., and Sohn, Y.H.: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation. Surf. Coat. Technol. 204, 797 (2009).CrossRefGoogle Scholar
Wang, H., Sheng, Z., Tarwater, E., Zhang, X., and Fergus, J.W.: Function of reaction layer in pyrochlore thermal barrier coatings against CMAS corrosion. ECS Trans. 66, 53 (2015).CrossRefGoogle Scholar
Wang, H., Bakal, A., Zhang, X., Tarwater, E., Sheng, Z., and Fergus, J.W.: CaO-MgO-Al2O3-SiO2(CMAS) corrosion of Gd2Zr2O7 and Sm2Zr2O7. J. Electrochem. Soc. 163, C643 (2016).CrossRefGoogle Scholar
Zhou, X., Chen, T., Yuan, J., Deng, Z., Zhang, H., Jiang, J., and Cao, X.: Failure of plasma sprayed nano-zirconia-based thermal barrier coatings exposed to molten CaO–MgO–Al2O3–SiO2 deposits. J. Am. Ceram. Soc. 102, 6357 (2019).CrossRefGoogle Scholar
J.T.E.S.I.W. Group: Manufactured Source for CMAS Creation & Ingestion in Gas Turbine Engines (Coatings Technology Integration Office, Wright-Patterson AFB, OH, USA, 2013).Google Scholar
Opie, N.P.: A comparison of Afghanistan, Yuma, AZ, and manufactured sands melted on EB-PVD thermal barrier coatings Air Force Institute of Technology, Wright-Patterson Air Force Base, OH, 2014.Google Scholar
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., -Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A.: Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676 (2012).CrossRefGoogle ScholarPubMed