Skip to main content Accessibility help

Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols

  • Zhebo Chen, Thomas F. Jaramillo (a1), Todd G. Deutsch (a2), Alan Kleiman-Shwarsctein (a3), Arnold J. Forman (a4), Nicolas Gaillard (a5), Roxanne Garland (a6), Kazuhiro Takanabe (a7), Clemens Heske (a8), Mahendra Sunkara (a9), Eric W. McFarland (a3), Kazunari Domen (a10), Eric L. Miller (a5), John A. Turner and Huyen N. Dinh (a11)...


Photoelectrochemical (PEC) water splitting for hydrogen production is a promising technology that uses sunlight and water to produce renewable hydrogen with oxygen as a by-product. In the expanding field of PEC hydrogen production, the use of standardized screening methods and reporting has emerged as a necessity. This article is intended to provide guidance on key practices in characterization of PEC materials and proper reporting of efficiencies. Presented here are the definitions of various efficiency values that pertain to PEC, with an emphasis on the importance of solar-to-hydrogen efficiency, as well as a flow chart with standard procedures for PEC characterization techniques for planar photoelectrode materials (i.e., not suspensions of particles) with a focus on single band gap absorbers. These guidelines serve as a foundation and prelude to a much more complete and in-depth discussion of PEC techniques and procedures presented elsewhere.


Corresponding author

a)Address all correspondence to this author. e-mail:
b)Address all correspondence to this author. e-mail:
c)Address all correspondence to this author. e-mail:
d)Address all correspondence to this author. e-mail:
e)These authors were editors of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to


Hide All
1.Holdren, J.P.Energy and sustainability. Science 315, 737 (2007)
2.Lewis, N.S., Nocera, D.G.Powering the planet: Chemical challenges in solar energy utilization. Proc. Nat. Acad. Sci. U.S.A. 103, 15729 (2006)
3.Fujishima, A., Honda, K.Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)
4.Khaselev, O., Turner, J.A.A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425 (1998)
5.Measurements of PEC hydrogen production materials, U.S. Department of Energy (2009)
6.Khaselev, O., Bansal, A., Turner, J.A.High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrogen Energy 26, 127 (2001)
7.U.S. Quantum Efficiency Measurements Department of Energy (2005)
8.Varghese, O.K., Grimes, C.A.Appropriate strategies for determining the photoconversion efficiency of water photo electrolysis cells: A review with examples using titania nanotube array photoanodes. Sol. Energy Mater. Sol. Cells 92, 374 (2008)
9.Bak, T., Nowotny, J., Rekas, M., Sorrell, C.C.Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrogen Energy 27, 991 (2002)
10.Mullejans, H., Ioannides, A., Kenny, R., Zaaiman, W., Ossenbrink, H.A., Dunlop, E.D.Spectral mismatch in calibration of photovoltaic reference devices by global sunlight method. Meas. Sci. Technol. 16, 1250 (2005)
11.Smestad, G.P., Krebs, F.C., Lampert, C.M., Granqvist, C.G., Chopra, K.L., Mathew, X., Takakura, H.Reporting solar cell efficiencies in solar energy materials and solar cells. Sol. Energy Mater. Sol. Cells 92, 371 (2008)
12.Nozik, A.J.Photoelectrolysis of water using semiconducting TiO2 crystals. Nature 257, 383 (1975)
13.Murphy, A.B., Barnes, P.R.F., Randeniya, L.K., Plumb, I.C., Grey, I.E., Horne, M.D., Glasscock, J.A.Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 31, 1999 (2006)
14.Standard, A.S.T.M.G173, 2003e1Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface (ASTM International, West Coshohocken, PA 2003)
15.Schoonen, M.A.A., Xu, Y., Strongin, D.R.An introduction to geocatalysis. J. Geochem. Explor. 62, 201 (1998)
16.Roos, A.Use of an integrating sphere in solar-energy research. Sol. Energy Mater. Sol. Cells 30, 77 (1993)
17.Jahan, F., Islam, M.H., Smith, B.E.Band-gap and refractive-index determination of Mo-black coatings using several techniques. Sol. Energy Mater. Sol. Cells 37, 283 (1995)
18.Anwar, M., Hogarth, C.A.Optical-properties of amorphous thin-films of MoO3 deposited by vacuum evaporation. Phys. Status Solidi A 109, 469 (1988)
19.Santra, K., Sarkar, C.K., Mukherjee, M.K., Ghosh, B.Copper-oxide thin-films grown by plasma evaporation method. Thin Solid Films 213, 226 (1992)
20.Murphy, A.B.Optical properties of an optically rough coating from inversion of diffuse reflectance measurements. Appl. Opt. 46, 3133 (2007)
21.Kubelka, P.New contributions to the optics of intensely light-scattering materials. Part I. J. Opt. Soc. Am. 38, 448 (1948)
22.Kim, Y.I., Atherton, S.J., Brigham, E.S., Mallouk, T.E.Sensitized layer metal-oxide-semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron-donors. J. Phys. Chem. 97, 11802 (1993)
23.Murphy, A.B.Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 91, 1326 (2007)
24.Finlayson, A.P., Tsaneva, V.N., Lyons, L., Clark, M., Glowacki, B.A.Evaluation of Bi-W-oxides for visible light photocatalysis. Phys. Status Solidi A 203, 327 (2006)
25.Kislov, N., Srinivasan, S.S., Emirov, Y., Stefanakos, E.K.Optical absorption red and blue shifts in ZnFe2O4 nanoparticles. Mater. Sci. Eng., B 153, 70 (2008)
26.Brigham, E.S., Weisbecker, C.S., Rudzinski, W.E., Mallouk, T.E.Stabilization of intrazeolitic cadmium telluride nanoclusters by ion exchange. Chem. Mater. 8, 2121 (1996)
27.Barton, D.G., Shtein, M., Wilson, R.D., Soled, S.L., Iglesia, E.Structure and electronic properties of solid acids based on tungsten oxide nanostructures. J. Phys. Chem. B 103, 630 (1999)
28.Elliott, R.J.Intensity of optical absorption by excitons. Phys. Rev. 108, 1384 (1957)
29.Tauc, J., Grigorov, R., Vancu, A.Optical properties and electronic structure of amorphous germanium. J. Phys. Soc. J. Peripher. Nerv. Syst. 21, 123 (1966)
30.Tauc, J., Menth, A., Wood, D.L.Optical and magnetic investigations of localized states in semiconducting glasses. Phys. Rev. Lett. 25, 749 (1970)
31.Davis, E.A., Mott, N.F.Conduction in non-crystalline systems. V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 903 (1970)
32.Wood, D.L., Tauc, J.Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5, 3144 (1972)
33.Mathew, X., Mathews, N.R., Sebastian, P.J.Temperature dependence of the optical transitions in electrodeposited Cu2O thin films. Sol. Energy Mater. Sol. Cells 70, 277 (2001)
34.Balamurugan, B., Mehta, B.R., Avasthi, D.K., Singh, F., Arora, A.K., Rajalakshmi, M., Raghavan, G., Tyagi, A.K., Shivaprasad, S.M.Modifying the nanocrystalline characteristics—Structure, size, and surface states of copper oxide thin films by high-energy heavy-ion irradiation. J. Appl. Phys. 92, 3304 (2002)
35.Pierson, J.F., Thobor-Keck, A., Billard, A.Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering. Appl. Surf. Sci. 210, 359 (2003)
36.Shanid, N.A.M., Khadar, M.A.Evolution of nanostructure, phase transition and band gap tailoring in oxidized Cu thin films. Thin Solid Films 516, 6245 (2008)
37.Kosugi, T., Kaneko, S.Novel spray-pyrolysis deposition of cuprous oxide thin films. J. Am. Ceram. Soc. 81, 3117 (1998)
38.Rakhshani, A.E.Preparation, characteristics and photovoltaic properties of cuprous-oxide—A review. Solid-State Electron. 29, 7 (1986)
39.Wieder, H., Czanderna, A.W.Optical properties of copper oxide films. J. Appl. Phys. 37, 184 (1966)
40.Drobny, V.F., Pulfrey, D.L.Properties of reactively-sputtered copper-oxide thin-films. Thin Solid Films 61, 89 (1979)
41.Rakhshani, A.E., Varghese, J.Optical-absorption coefficient and thickness measurement of electrodeposited films of Cu2O. Phys. Status Solidi A 101, 479 (1987) Jongh, P.E., Vanmaekelbergh, D., Kelly, J.J.Cu2O: Electrodeposition and characterization. Chem. Mater. 11, 3512 (1999)
43.Reddy, A.S., Rao, G.V., Uthanna, S., Reddy, P.S.Structural and optical studies on do reactive magnetron sputtered Cu2O films. Mater. Lett. 60, 1617 (2006)
44.Mahalingam, T., Chitra, J.S.P., Chu, J.P., Moon, H., Kwon, H.J., Kim, Y.D.Photoelectrochemical solar cell studies on electroplated cuprous oxide thin films. J. Mater. Sci. - Mater. Electron. 17, 519 (2006)
45.Siripala, W., Perera, L., DeSilva, K.T.L., Jayanetti, J., Dharmadasa, I.M.Study of annealing effects of cuprous oxide grown by electrodeposition technique. Sol. Energy Mater. Sol. Cells 44, 251 (1996)
46.Gomes, W.P., Cardon, F.Electron-energy levels in semiconductor electrochemistry. Prog. Surf. Sci. 12, 155 (1982)
47.Weinhardt, L., Blum, M., Bar, M., Heske, C., Cole, B., Marsen, B., Miller, E.L.Electronic surface level positions of WO3 thin films for photoelectrochemical hydrogen production. J. Phys. Chem. C 112, 3078 (2008)
48.Bar, M., Nishiwaki, S., Weinhardt, L., Pookpanratana, S., Fuchs, O., Blum, M., Yang, W., Denlinger, J.D., Shafarman, W.N., Heske, C.Depth-resolved band gap in Cu(In,Ga)(S,Se)(2) thin films. Appl. Phys. Lett. 93, 244103 (2008)
49.Turner, J.A.Energetics of the semiconductor-electrolyte interface. J. Chem. Educ. 60, 327 (1983)
50.Deutsch, T.G.Sunlight, water, and III-V ntrides for fueling the future Ph.D. Thesis University of Colorado (2006)
51.Geisz, J.F., Friedman, D.J., Kurtz, S.GaNPAs solar cells lattice-matched to GaPConference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002 (2002)
52.Cardon, F., Gomes, W.P.Determination of flat-band potential of a semiconductor in contact with a metal or an electrolyte from Mott-Schottky plot. J. Phys. D: Appl. Phys. 11, L63 (1978)
53.Nozik, A.J., Memming, R.Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem. 100, 13061 (1996)
54.Chazalviel, J.N.Experimental techniques for the study of the semiconductor-electrolyte interface. Electrochim. Acta 33, 461 (1988)
55.Vanmeirhaeghe, R.L., Dutoit, E.C., Cardon, F., Gomes, W.P.Application of Kramers-Kronig relations to problems concerning frequency-dependence of electrode impedance. Electrochim. Acta 20, 995 (1975)
56.Koval, C.A., Howard, J.N.Electron-transfer at semiconductor electrode liquid electrolyte interfaces. Chem. Rev. 92, 411 (1992)
57.Pleskov, Y.V., Mazin, V.M., Evstefeeva, Y.E., Varnin, V.P., Teremetskaya, I.G., Laptev, V.A.Photoelectrochemical determination of the flatband potential of boron-doped diamond. Electrochem. Solid-State Lett. 3, 141 (2000)
58.Marsen, B., Cole, B., Miller, E.L.Influence of sputter oxygen partial pressure on photoelectrochemical performance of tungsten oxide films. Sol. Energy Mater. Sol. Cells 91, 1954 (2007)
59.Alexander, B.D., Kulesza, P.J., Rutkowska, L., Solarska, R., Augustynski, J.Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18, 2298 (2008)
60.Marsen, B., Cole, B., Miller, E.L.Photoelectrolysis of water using thin copper gallium diselenide electrodes. Sol. Energy Mater. Sol. Cells 92, 1054 (2008)
61.Wang, H.L., Deutsch, T.G., Turner, J.A.Direct water splitting under visible light with nanostructured hematite and WO3 photoanodes and a GaInP2 photocathode. J. Electrochem. Soc. 155, F91 (2008)
62.Ginley, D.S., Butler, M.A.Photoelectrolysis of water using iron titanate anodes. J. Appl. Phys. 48, 2019 (1977)
63.Fujii, K., Karasawa, T., Oshkawa, K.Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation. Jpn. J. Appl. Phys. 44, L543 (2005)
64.Hashiguchi, H., Maeda, K., Abe, R., Ishikawa, A., Kubota, J., Domen, K.Photoresponse of GaN:ZnO electrode on FTO under visible light irradiation. Bull. Chem. Soc. Jpn. 82, 401 (2009)
65.Technical Plan Hydrogen Production, Multi-Year Research, Development and Demonstration Plan: Planned Program Activities for 2005-2015, U.S. Department of Energy (2007)


Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols

  • Zhebo Chen, Thomas F. Jaramillo (a1), Todd G. Deutsch (a2), Alan Kleiman-Shwarsctein (a3), Arnold J. Forman (a4), Nicolas Gaillard (a5), Roxanne Garland (a6), Kazuhiro Takanabe (a7), Clemens Heske (a8), Mahendra Sunkara (a9), Eric W. McFarland (a3), Kazunari Domen (a10), Eric L. Miller (a5), John A. Turner and Huyen N. Dinh (a11)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed