Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-25T10:39:11.505Z Has data issue: false hasContentIssue false

Absolute total energy of small copper clusters in an all-electron mixed-basis approach with the generalized-gradient approximation

Published online by Cambridge University Press:  31 January 2011

Keiichiro Shiga
Affiliation:
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Kaoru Ohno
Affiliation:
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Yoshiyuki Kawazoe
Affiliation:
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Rong-Tang Fu
Affiliation:
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan, and Department of Physics, Fudan University, Shanghai 200433, China
Yutaka Maruyama
Affiliation:
National Industrial Institute of Nagoya, 1-1 Hiratecho, Kita-Ku, Aichi 462-8510, Japan
Get access

Abstract

In order to investigate the absolute value for the total and exchange-correlation energies of small transition metal clusters, an all-electron mixed-basis approach with the generalized gradient approximation (Perdew–Wang's GGA-1) is applied for the first time to small Cu clusters. We find that the GGA significantly deepens (2.57–2.59 a.u. per atom) both the total and exchange-correlation energies obtained with the local density approximation. A better agreement is obtained with experiments for the binding energy of Cu2 when the spin-dependent calculation is used for an isolated Cu atom.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hohenberg, P. and Kohn, W., Phys. Rev. 136, 864 (1964).CrossRefGoogle Scholar
2.Kohn, W. and Sham, L. J., Phys. Rev. 140, 1133 (1965).CrossRefGoogle Scholar
3.Gunnarsson, O. and Lundqvist, B.I., Phys. Rev. B 13, 4274 (1976).CrossRefGoogle Scholar
4.Perdew, J. P. and Wang, Y., Phys. Rev. B 33, 8801 (1986).Google Scholar
5.Perdew, J. P., Phys. Rev. B 33, 8822 (1986).CrossRefGoogle Scholar
6.Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., and Fiolhais, C., Phys. Rev. B 46, 6671 (1992).CrossRefGoogle Scholar
7.Asada, T. and Terakura, K., Phys. Rev. B 47, 15992 (1993).CrossRefGoogle Scholar
8.Dufek, P., Blaha, P., Sliwkoan, V., and Schwarz, K., Phys. Rev. B 49, 10170 (1994).CrossRefGoogle Scholar
9.Jackson, A., Phys. Rev. B 47, 9715 (1993).CrossRefGoogle Scholar
10.Maruyama, Y., Ohno, K., Shiga, K., Kawazoe, Y., Igarashi, K., Murakami, J., and Tanemura, S., unpublished.Google Scholar
11.Ohno, K., Mauri, F., and Louie, S.G., Phys. Rev. B 56, 1009 (1997).CrossRefGoogle Scholar
12.Ohno, K., Maruyama, Y., and Kawazoe, Y., Phys. Rev. B 53, 4078 (1996).CrossRefGoogle Scholar
13.Ohno, K., Maruyama, Y., Esfarjani, K., Kawazoe, Y., Sato, N., Hatakeyama, R., Hirata, T., and Niwano, M., Phys. Rev. Lett. 76, 3590 (1996).CrossRefGoogle Scholar
14.Bassobrio, C., Pasquarello, A., and Car, R., Chem. Phys. Lett. 238, 215 (1995).CrossRefGoogle Scholar
15.Louie, S.G., Ho, K-M., and Cohen, M.L., Phys. Rev. B 19, 1774 (1979).CrossRefGoogle Scholar
16.Ceperley, D.M. and Alder, B.J., Phys. Rev. Lett. 45, 566 (1980).CrossRefGoogle Scholar
17.Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
18.Herman, F. and Skillman, S., Atomic Structure Calculations (Prentice-Hall Inc., Englewood Cliffs, NJ, 1963).Google Scholar
19.Morse, M.D., Chem. Rev. 86, 1049 (1986).CrossRefGoogle Scholar
20.Rohlfing, E.A. and Valenini, J.J., J. Chem. Phys. 84, 6560 (1986).CrossRefGoogle Scholar