Skip to main content Accessibility help

Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load–penetration data

  • J. Alkorta (a1), J.M. Martínez-Esnaola (a1) and J. Gil Sevillano (a1)


The connection between parameters that can be measured by means of instrumented indentation with the real mechanical properties has been a matter of discussion for several years. In fact, even hardness is not a readily measurable magnitude since the real contact area depends on both the elastic and plastic properties of the sample. Recently, Dao et al. [ Acta Mater49, 3899 (2001)] proposed a method based on numerical fittings to calculate by a forward-reverse algorithm the elastoplastic properties of a sample from the load-penetration curve obtained with a sharp indenter. This work will show, in contrast, that it is not possible to measure uniquely these mechanical properties of a sample in that way.



Hide All
1.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
2.Mata, M., Anglada, M. and Alcalá, J.: Contact deformation regimes around sharp indentations and the concept of the characteristic strain. J. Mater. Res. 17, 964 (2002).
3.Choi, Y., Lee, B-W., Lee, H-S. and Kwon, D.: Indentation curve analysis for pile-up, sink-in and tip-blunting effects in sharp indentations, in Thin Films—Stresses and Mechanical Properties X, edited by Corcoran, S.G., Joo, Y-C., Moody, N.R., and Z. Suo. (Mater. Res. Soc. Symp. Proc. 795, Warrendale, PA, 2004) p. 11.
4.Alkorta, J. and Sevillano, J. Gil: Measuring the strain rate sensitivity by instrumented indentation. Application to an ultra fine grain (equal channel angular pressed) eutectic Sn-Bi alloy. J. Mater. Res. 19, 282 (2004).
5.Alkorta, J. and Sevillano, J. Gil: Medida de la dureza de sólidos mediante nanoindentación. B. Soc. Esp. Cer. Vidrio. (in press, 2005).
6.McElhaney, K.W., Vlassak, J.J. and Nix, W.D.: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13, 1300 (1998).
7.Taljat, B., Zacharia, T. and Pharr, G.M.: Pile-up behavior of spherical indentations in engineering materials, in Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 33.
8.Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Engng. Sci. 3, 47 (1965).
9.Sneddon, I.N.: Boussinesq’s problem for a rigid cone. Proc. Cambridge Phil. Soc. 44, 492 (1948).
10.Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A. and Suresh, S.: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).
11.Cheng, Y-T. and Cheng, C-M.: Relationship between hardness, elastic modulus and the work of indentation. Appl. Phys. Lett. 73, 614 (1998).
12.Cheng, Y-T. and Cheng, C-M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R. 44, 91 (2004).
13.Cheng, Y-T. and Cheng, C-M.: Can stress-strain relationships be obtained from indentation curves using conical or pyramidal indenters? J. Mater. Res. 14, 3493 (1999).
14.Capehart, T.W. and Cheng, Y-T.: Determining constitutive models from conical indentation: Sensitivity analysis. J. Mater. Res. 18, 827 (2003).
15.Tho, K.K., Swaddiwudhipong, S., Liu, Z.S., Zeng, K. and Hua, J.: Uniqueness of reverse analysis from conical indentation tests. J. Mater. Res. 19, 2498 (2004).
16.Pharr, G.M. and Bolshakov, A.: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660 (2002).
17.Bower, A.F., Fleck, N.A., Needleman, A. and Ogbonna, N.: Indentation of a power law creeping solid. Proc. R. Soc. London A441, 97 (1993).
18.Storåkers, B., Biwa, S. and Larsson, P-L.: Similarity analysis of inelastic contact. Int. J. Solids. Struct 34, 3061 (1997).
19.Hay, J.C., Bolshakov, A. and Pharr, G.M.: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296 (1999).
20.Stillwell, N.A. and Tabor, D.: Elastic recovery of conical indentations. Proc. Phys. Soc. 78, 169 (1961).
21.Marx, V. and Balke, H.: A critical investigation of the unloading behavior of sharp indentation. Acta Mater. 45, 3791 (1997).
22.Johnson, K.L.: Contact Mechanics, 1st ed. (Cambridge University Press, Cambridge, U.K., 1985) p. 175.
23.Mata, M. and Alcalá, J.: The role of friction on sharp indentation. J. Mech. Phys. Solids 52, 145 (2004).
24.Futakawa, M., Wakui, T., Tanabe, Y. and Ioka, I.: Identification of the constitutive equation by the indentation technique using plural indenters with different apex angles. J. Mater. Res. 16, 2283 (2001).
25.Chollacoop, N., Dao, M. and Suresh, S.: Depth sensing instrumented indentation with dual sharp indenters. Acta Mater. 51, 3713 (2003).
26.Cheng, Y-T. and Li, Z.: Scaling relationships for indentation measurements. Philos. Mag. A 82, 1821 (2002).


Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load–penetration data

  • J. Alkorta (a1), J.M. Martínez-Esnaola (a1) and J. Gil Sevillano (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed