Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-r9mtw Total loading time: 0.31 Render date: 2021-04-22T00:44:22.457Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Upconversion rare earth nanoparticles functionalized with folic acid for bioimaging of MCF-7 breast cancer cells

Published online by Cambridge University Press:  26 December 2017

Dalia Chávez-García
Affiliation:
Centro de Enseñanza Técnica y Superior, Campus Ensenada, Ensenada, Baja California C.P. 22860, México
Karla Juárez-Moreno
Affiliation:
Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California C.P. 22860, México; and CONACYT Research Fellow at Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California C.P. 22860, Mexico
Cristian H. Campos
Affiliation:
Facultad de Ciencias Químicas, Universidad de Concepción, Concepción C.P. 4070386, Chile
Joel B. Alderete
Affiliation:
Facultad de Ciencias Químicas, Universidad de Concepción, Concepción C.P. 4070386, Chile
Gustavo A. Hirata
Affiliation:
Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California C.P. 22860, México
Corresponding
E-mail address:
Get access

Abstract

Luminescent biolabels are being eagerly investigated as a means of detecting cancer cells by bioimaging. Upconversion nanoparticles are a promising option to be used as biolabels for cancer cell detection. This process uses a near infrared beam (NIR λ = 980 nm) as the excitation source to upconvert the energy into light in the visible region. The present study, used Y2O3:Yb3+, Er3+ (1%, 10% mol) and Gd2O3:Yb3+, Er3+ (1%, 10% mol) capable of emitting red photons of λ = 660 nm. The nanoparticles were previously functionalized with aminosilanes and folic acid (UCNP-NH2-FA). Folic acid binds to the folate receptor on the surface of MCF-7 breast cancer cells, and this binding promotes internalization of the UCNPs via endocytosis. The UCNPs were characterized by TEM, EDS, and Fourier transform infrared. Cytotoxicity was also analyzed using the MTT (methy-134 thiazolyltetrazolium) colorimetric assay. The UCNPs-NH2-FA was noncytotoxic to the studied cancer cells and they were clearly localizable within the cell cytoplasm via confocal microscope.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

Contributing Editor: Lakshmi Nair

References

Blasse, G. and Grabmaier, B.: Luminescent Materials, Telos (Springer-Verlag, Berlin, 1994).CrossRefGoogle Scholar
Da Costa, M., Doughan, S., Han, Y., and Krull, U.: Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Anal. Chim. Acta 832, 1 (2014).CrossRefGoogle Scholar
Chávez, D., Contreras, O., and Hirata, G.: Synthesis and upconversion luminescence of nanoparticles Y2O3 and Gd2O3 co-doped with Yb3+ and Er3+ . Nanomater. Nanotechnol. 6, 7 (2016).CrossRefGoogle Scholar
Zhang, F.: Photon Upconversion Nanomaterials, Nanostructure Science and Technology (Springer-Verlag, Berlin Heidelberg, 2015).Google Scholar
Kong, W., Shan, J., and Ju, Y.: Flame synthesis and effects of host materials on Yb3+/Er3+ co-doped upconversion nanophosphors. Mater. Lett. 64, 668 (2010).CrossRefGoogle Scholar
Chávez, D., Juárez-Moreno, K., and Hirata, G.: Aminosilane functionalization and cytotoxicity effects of upconversion nanoparticles Y2O3 and Gd2O3 co-doped with Yb3+ and Er3+ . Nano Biomed. 3, 1 (2016).Google Scholar
Lu, Y., Sega, E., Leamon, C-P., and Low, P-S.: Folate receptor-targeted immunotherapy of cancer: Mechanism and therapeutic potential. Adv. Drug Delivery Rev. 56, 1161 (2000).CrossRefGoogle ScholarPubMed
Soule, H-D., Vazquez, J., Long, A., Albert, S., and Brennan, M.: A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst. 51, 1409 (1973).CrossRefGoogle ScholarPubMed
Hemmer, E., Yamano, T., Kishimoto, H., Venkatachalam, N., Hyodoand, H., and Soga, K.: Cytotoxic aspects of gadolinium oxide nanostructures for up-conversion and NIR bioimaging. Acta Biomater. 9, 4734 (2012).CrossRefGoogle Scholar
Sudimack, J. and Lee, R-J.: Targeted drug delivery via the folate receptor. Adv. Drug Delivery Rev. 41, 147 (2000).CrossRefGoogle ScholarPubMed
Stöber, W., Fink, A., and Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
Sounderya, N. and Zhang, Y.: Upconversion nanoparticles for imaging cells. Proceedings 23, 741 (2009).Google Scholar
Martínez-Carpio, P-A.: Constitutive and regulated secretion of epidermal growth factor and transforming growth factor-beta1 in MDA-MB-231 breast cancer cell line in 11-day cultures. Cell. Signalling 11, 753 (1999).CrossRefGoogle ScholarPubMed
Sanchez-Sanchez, L., Tapia-Moreno, A., Juarez-Moreno, K., Patterson, D., Cadena-Nava, R., Douglas, T., and Vazquez-Duhalt, R.: Design of a VLP nanovehicle for CYP450 enzymatic activity delivery. J. Nanobiotechnol. 13, 66 (2015).CrossRefGoogle ScholarPubMed
Chatterjee, D-K., Rufaihah, A-J., and Zhang, Y.: Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29, 937 (2007).CrossRefGoogle ScholarPubMed
Lippman, M-E. and Bolan, G.: Oestrogen-responsive human breast cancer in long-term tissue culture. Nature 256, 592 (1975).CrossRefGoogle ScholarPubMed
Horwitz, K-B., Costlow, M-E., and McGuire, W-L.: MCF-7: A human breast cancer cell line with estrogen, androgen, progesterone and glucocorticoid receptors. Steroids 26, 785 (1975).CrossRefGoogle ScholarPubMed
Vetrone, F., Boyer, J-C., and Capobianco, J-A.: Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3:Er3+ . J. Phys. Chem. 107, 1107 (2003).CrossRefGoogle Scholar
Hirai, T. and Orikoshi, T.: Preparation of Gd2O3:Yb, Er and Gd2O2S:Yb, Er infrared to visible conversion phosphor ultradine particles using an emulsion liquid membrane system. J. Colloid Interface Sci. 269, 103 (2004).CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 47
Total number of PDF views: 133 *
View data table for this chart

* Views captured on Cambridge Core between 26th December 2017 - 22nd April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Upconversion rare earth nanoparticles functionalized with folic acid for bioimaging of MCF-7 breast cancer cells
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Upconversion rare earth nanoparticles functionalized with folic acid for bioimaging of MCF-7 breast cancer cells
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Upconversion rare earth nanoparticles functionalized with folic acid for bioimaging of MCF-7 breast cancer cells
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *