Skip to main content Accessibility help
×
Home

Two-dimensional Frank–van-der-Merwe growth of functional oxide and nitride thin film superlattices by pulsed laser deposition

Published online by Cambridge University Press:  13 July 2017


Michael Lorenz
Affiliation:
Universität Leipzig, Felix-Bloch-Institut für Festkörperphysik, Semiconductor Physics Group, Leipzig D-04103, Germany
Haoming Wei
Affiliation:
Universität Leipzig, Felix-Bloch-Institut für Festkörperphysik, Semiconductor Physics Group, Leipzig D-04103, Germany
Florian Jung
Affiliation:
Universität Leipzig, Felix-Bloch-Institut für Festkörperphysik, Semiconductor Physics Group, Leipzig D-04103, Germany
Stefan Hohenberger
Affiliation:
Universität Leipzig, Felix-Bloch-Institut für Festkörperphysik, Semiconductor Physics Group, Leipzig D-04103, Germany
Holger Hochmuth
Affiliation:
Universität Leipzig, Felix-Bloch-Institut für Festkörperphysik, Semiconductor Physics Group, Leipzig D-04103, Germany
Marius Grundmann
Affiliation:
Universität Leipzig, Felix-Bloch-Institut für Festkörperphysik, Semiconductor Physics Group, Leipzig D-04103, Germany
Christian Patzig
Affiliation:
Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS, Center for Applied Microstructure Diagnostics CAM, Halle D-06120, Germany
Susanne Selle
Affiliation:
Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS, Center for Applied Microstructure Diagnostics CAM, Halle D-06120, Germany
Thomas Höche
Affiliation:
Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS, Center for Applied Microstructure Diagnostics CAM, Halle D-06120, Germany
Corresponding

Abstract

Pulsed laser deposition is one of the most flexible growth methods for high-quality epitaxial multifunctional thin films and short-period superlattices. The following examples of current research interest demonstrate the state-of-the art: First, it is shown that the magnetoelectric performance of multiferroic BiFeO3–BaTiO3 (001)-oriented superlattices depends on the crystalline coherence of the different layers at the interfaces. Second, it is exemplified that dielectric-plasmonic superlattices built from the electrically insulating oxide MgO and the metallically conducting nitride TiN are promising metamaterials with hyperbolic dispersion. As a third example, it is demonstrated that LaNiO3- and LaMnO3-based superlattices with (001)-, (011)-, and (111)-out-of-plane orientation and controlled single layer thickness from 2 to 15 atomic monolayers show metal-insulator transitions and tunable gaps, in partial agreement with density functional theory calculations. Underlined by these examples, it is shown that the precise control of an epitaxially coherent, or two-dimensional layer-by-layer growth, named after Jan van der Merwe, is a prerequisite to achieve the desired functionality of oxide–oxide and oxide–nitride superlattices.


Type
Invited Review
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

Contributing Editor: Mmantsae Diale

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.


References

Mannhart, J. and Schlom, D.G.: Oxide interfaces—An opportunity for electronics. Science 327, 1607 (2010).CrossRefGoogle ScholarPubMed
Lorenz, M., Ramachandra Rao, M.S., Venkatesan, T., Fortunato, E., Barquinha, P., Branquinho, R., Salgueiro, D., Martins, R., Carlos, E., Liu, A., Shan, F.K., Grundmann, M., Boschker, H., Mukherjee, J., Priyadarshini, M., DasGupta, N., Rogers, D.J., Teherani, F.H., Sandana, E.V., Bove, P., Rietwyk, K., Zaban, A., Veziridis, A., Weidenkaff, A., Muralidhar, M., Murakami, M., Abel, S., Fompeyrine, J., Zuniga-Perez, J., Ramesh, R., Spaldin, N.A., Ostanin, S., Borisov, V., Mertig, I., Lazenka, V., Srinivasan, G., Prellier, W., Uchida, M., Kawasaki, M., Pentcheva, R., Gegenwart, P., Miletto Granozio, F., Fontcuberta, J., and Pryds, N.: The 2016 oxide electronic materials and oxide interfaces roadmap. J. Phys. D: Appl. Phys. 49, 433001 (2016).CrossRefGoogle Scholar
Lorenz, M., Brandt, M., Wagner, G., Hochmuth, H., Zimmermann, G., von Wenckstern, H., and Grundmann, M.: MgZnO:P homoepitaxy by pulsed laser deposition: Pseudomorphic layer-by-layer growth and high electron mobility. Proc. SPIE 7217, 72170N (2009).CrossRefGoogle Scholar
Lorenz, M. and Ramachandra Rao, M.S.: Preface to special issue “25 years of pulsed laser deposition”. J. Phys. D: Appl. Phys. 47, 030301 (2014); see also following articles.CrossRefGoogle Scholar
Lorenz, M.: Pulsed laser deposition of ZnO-based thin films, chapter 7. In Transparent Conductive Zinc Oxide. Basics and Applications in Thin Film Solar Cells, Ellmer, K., Klein, A., and Rech, B., eds.; Springer Series in Materials Science, Vol. 104 (Springer, Berlin, 2008); p. 303.CrossRefGoogle Scholar
von Wenckstern, H., Schmidt, H., Hanisch, C., Brandt, M., Czekalla, C., Benndorf, G., Biehne, G., Rahm, A., Hochmuth, H., Lorenz, M., and Grundmann, M.: Homoepitaxy of ZnO by pulsed-laser deposition. Phys. Status Solidi RRL 1, 129 (2007).CrossRefGoogle Scholar
Tsukazaki, A., Ohtomo, A., Onuma, T., Ohtani, M., Makino, T., Sumiya, M., Ohtani, K., Chichibu, S.F., Fuke, S., Segawa, Y., Ohno, H., Koinuma, H., and Kawasaki, M.: Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 4, 42 (2005).CrossRefGoogle Scholar
Karger, M. and Schilling, M.: Epitaxial properties of Al-doped ZnO thin films grown by pulsed laser deposition on SrTiO3(001). Phys. Rev. B 71, 075304 (2005).CrossRefGoogle Scholar
Zippel, J., Lorenz, M., Benndorf, G., and Grundmann, M.: Persistent layer-by-layer growth for pulsed-laser homoepitaxy of (0001) ZnO. Phys. Status Solidi RRL 6, 433 (2012).CrossRefGoogle Scholar
Koster, G., Rijnders, G.J.H.M., Blank, D.H.A., and Rogalla, H.: Imposed layer-by-layer growth by pulsed laser interval deposition. Appl. Phys. Lett. 74, 3729 (1999).CrossRefGoogle Scholar
Lorenz, M., Lazenka, V., Schwinkendorf, P., Bern, F., Ziese, M., Modarresi, H., Volodin, A., Van Bael, M.J., Temst, K., Vantomme, A., and Grundmann, M.: Multiferroic BaTiO3–BiFeO3 composite thin films and multilayers: Strain engineering and magnetoelectric coupling. J. Phys. D: Appl. Phys. 47, 135303 (2014).CrossRefGoogle Scholar
Lorenz, M., Wagner, G., Lazenka, V., Schwinkendorf, P., Modarresi, H., Van Bael, M.J., Vantomme, A., Temst, K., Oeckler, O., and Grundmann, M.: Correlation of magnetoelectric coupling in multiferroic BaTiO3–BiFeO3 superlattices with oxygen vacancies and antiphase octahedral rotations. Appl. Phys. Lett. 106, 012905 (2015).CrossRefGoogle Scholar
Lorenz, M., Lazenka, V., Schwinkendorf, P., Van Bael, M.J., Vantomme, A., Temst, K., Grundmann, M., and Höche, T.: Epitaxial coherence at interfaces as origin of high magnetoelectric coupling in multiferroic BaTiO3–BiFeO3 superlattices. Adv. Mater. Interfaces 3, 1500822 (2016).CrossRefGoogle Scholar
Lazenka, V., Lorenz, M., Modarresi, H., Bisht, M., Rüffer, R., Bonholzer, M., Grundmann, M., Van Bael, M.J., Vantomme, A., and Temst, K.: Magnetic spin structure and magnetoelectric coupling in BiFeO3–BaTiO3 multilayer. Appl. Phys. Lett. 106, 082904 (2015).CrossRefGoogle Scholar
Vaz, C.A.F., Hoffman, J., Ahn, C.H., and Ramesh, R.: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900 (2010).CrossRefGoogle ScholarPubMed
Ma, J., Hu, J., Li, Z., and Nan, C-W.: Recent progress in multiferroic magnetoelectric composites: From bulk to thin film. Adv. Mater. 23, 1062 (2011).CrossRefGoogle Scholar
Priya, S., Yang, S.C., Maurya, D., and Yan, Y.: Recent advances in piezoelectric and magnetoelectric materials phenomena. In Composite Magnetoelectrics—Materials, Structures and Applications, Srinivasan, G., Priya, S., and Sun, N.X., eds.; Woodhead Publishing Series in Electronic and Optical Materials No. 62 (Elsevier, Amsterdam, 2015); pp. 103157.Google Scholar
Feng, N., Mi, W., Wang, X., Cheng, Y., and Schwingenschlögl, U.: Superior properties of energetically stable La2/3Sr1/3MnO3/tetragonal BiFeO3 multiferroic superlattices. ACS Appl. Mater. Interfaces 7, 10612 (2015).CrossRefGoogle ScholarPubMed
Gupta, R., Chaudhary, S., and Kotnala, R.K.: Interfacial charge induced magnetoelectric coupling at BiFeO3/BaTiO3 bilayer interface. ACS Appl. Mater. Interfaces 7, 8472 (2015).CrossRefGoogle Scholar
Kotnala, R.K., Gupta, R., and Chaudhary, S.: Giant magnetoelectric coupling interaction in BaTiO3/BiFeO3/BaTiO3 trilayer multiferroic heterostructures. Appl. Phys. Lett. 107, 082908 (2015).CrossRefGoogle Scholar
Popkov, A.F., Davydova, M.D., Zvezdin, K.A., Solov’yov, S.V., and Zvezdin, A.K.: Origin of the giant linear magnetoelectric effect in perovskitelike multiferroic BiFeO3 . Phys. Rev. B 93, 094435 (2016).CrossRefGoogle Scholar
Lorenz, M., de Pablos-Martin, A., Patzig, C., Stölzel, M., Brachwitz, K., Hochmuth, H., Grundmann, M., and Höche, T.: Highly textured fresnoite thin films synthesized in situ by pulsed laser deposition with CO2 laser direct heating. J. Phys. D: Appl. Phys. 47, 034013 (2014).CrossRefGoogle Scholar
Hansmann, P., Yang, X.P., Toschi, A., Khaliullin, G., Andersen, O.K., and Held, K.: Turning a nickelate Fermi surface into a cupratelike one through heterostructuring. Phys. Rev. Lett. 103, 016401 (2009).CrossRefGoogle ScholarPubMed
Doennig, D., Pickett, W.E., and Pentcheva, R.: Confinement-driven transitions between topological and Mott phases in (LaNiO3) N /(LaAlO3) M (111) superlattices. Phys. Rev. B 89, 121110(R) (2014).CrossRefGoogle Scholar
Doennig, D., Baidya, S., Pickett, W.E., and Pentcheva, R.: Design of Chern and Mott insulators in buckled 3d oxide honeycomb lattices. Phys. Rev. B 93, 165145 (2016).CrossRefGoogle Scholar
Wei, H.M., Jenderka, M., Bonholzer, M., Grundmann, M., and Lorenz, M.: Modeling the conductivity around the dimensionality-controlled metal-insulator transition in LaNiO3/LaAlO3 (001) superlattices. Appl. Phys. Lett. 106, 042103 (2015).CrossRefGoogle Scholar
Wei, H.M., Grundmann, M., and Lorenz, M.: Confinement-driven metal-insulator transition and polarity-controlled conductivity of epitaxial LaNiO3/LaAlO3 (111) superlattices. Appl. Phys. Lett. 109, 082108 (2016).CrossRefGoogle Scholar
Wei, H.M., Barzola-Quiquia, J.L., Yang, C., Patzig, C., Höche, T., Esquinazi, P., Grundmann, M., and Lorenz, M.: Charge transfer-induced magnetic exchange bias and electron localization in (111)- and (001)-oriented LaNiO3/LaMnO3 superlattices. Appl. Phys. Lett. 110, 102403 (2017).CrossRefGoogle Scholar
Sass, J., Mazur, K., Surma, B., Eichhorn, F., Litwin, D., Galas, J., and Sitarek, S.: X-ray studies of ultra-thin Si wafers for mirror application. Nucl. Instrum. Methods Phys. Res., Sect. B 253, 236 (2006).CrossRefGoogle Scholar
Kawasaki, M., Ohtomo, A., Arakane, T., Takahashi, K., Yoshimoto, M., and Koinuma, H.: Atomic control of SrTiO3 surface for perfect epitaxy of perovskite oxides. Appl. Surf. Sci. 107, 102 (1996).CrossRefGoogle Scholar
Koster, G., Rijnders, G., Blank, D.H.A., and Rogalla, H.: Surface morphology determined by (001) single-crystal SrTiO3 termination. Physica C 339, 215 (2000).CrossRefGoogle Scholar
Wei, H.M.: Conductivity behavior of LaNiO3- and LaMnO3-based thin film superlattices. Ph.D. thesis, Universität Leipzig, Fakultät für Physik und Geowissenschaften, Leipzig, Germany, 2017.
Bonholzer, M., Lorenz, M., and Grundmann, M.: TiN layer-by-layer growth of TiN by pulsed laser deposition on in situ annealed (100) MgO substrates. Phys. Status Solidi A 211, 2621 (2014).CrossRefGoogle Scholar
Lorenz, M., Hochmuth, H., Grüner, C., Hilmer, H., Lajn, A., Spemann, D., Brandt, M., Zippel, J., Schmidt-Grund, R., von Wenckstern, H., and Grundmann, M.: Oxide thin film heterostructures on large area, with flexible doping, low dislocation density, and abrupt interfaces: Grown by pulsed laser deposition. Laser Chem. 2010, 140976 (2010).CrossRefGoogle Scholar
Höche, Th., Gerlach, J.W., and Petsch, T.: Static-charging mitigation and contamination avoidance by selective carbon coating of TEM samples. Ultramicroscopy 106, 981 (2006).CrossRefGoogle ScholarPubMed
Lorenz, M., Hirsch, D., Patzig, C., Höche, T., Hohenberger, S., Hochmuth, H., Lazenka, V., Temst, K., and Grundmann, M.: Correlation of interface impurities and chemical gradients with high magnetoelectric coupling strength in multiferroic BiFeO3–BaTiO3 superlattices. ACS Appl. Mater. Interfaces 9, 1895618965 (2017).CrossRefGoogle Scholar
Naik, G.V., Schroeder, J.L., Ni, X., Kildishev, A.V., Sands, T.D., and Boltasseva, A.: Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478 (2012).CrossRefGoogle Scholar
Salandrino, A. and Engheta, N.: Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys. Rev. B 74, 075103 (2006).CrossRefGoogle Scholar
Naik, G.V., Saha, B., Liu, J., Saber, S.M., Stach, E.A., Irudayaraj, J.M.K., Sands, T.D., Shalaev, V.M., and Boltasseva, A.: Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials. Proc. Natl. Acad. Sci. U. S. A. 111, 7546 (2014).CrossRefGoogle ScholarPubMed
Boris, A.V., Matiks, Y., Benckiser, E., Frano, A., Popovich, P., Hinkov, V., Wochner, P., Colin, M.C., Detemple, E., Malik, V.K., Bernhard, C., Prokscha, T., Suter, A., Salman, Z., Morenzoni, E., Cristiani, G., Habermeier, H.U., and Keimer, B.: Dimensionality control of electronic phase transitions in nickel–oxide superlattices. Science 332, 937 (2011).CrossRefGoogle ScholarPubMed
Gibert, M., Zubko, P., Scherwitzl, R., Íñiguez, J., and Triscone, J-M.: Exchange bias in LaNiO3–LaMnO3 superlattices. Nat. Mater. 11, 195 (2012).CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 169
Total number of PDF views: 292 *
View data table for this chart

* Views captured on Cambridge Core between 13th July 2017 - 1st December 2020. This data will be updated every 24 hours.

Hostname: page-component-6d4bddd689-mg6j7 Total loading time: 6.683 Render date: 2020-12-01T16:40:14.429Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Tue Dec 01 2020 15:43:08 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Two-dimensional Frank–van-der-Merwe growth of functional oxide and nitride thin film superlattices by pulsed laser deposition
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Two-dimensional Frank–van-der-Merwe growth of functional oxide and nitride thin film superlattices by pulsed laser deposition
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Two-dimensional Frank–van-der-Merwe growth of functional oxide and nitride thin film superlattices by pulsed laser deposition
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *