No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
Thermal stability and crystallization kinetics of the melt-quenched amorphous Al85Ce5Ni8Co2 alloy were investigated by x-ray diffraction and differential scanning calorimetry (DSC). The glass transition was followed by a supercooled liquid region (21 °C) and then by a two-step crystallization process. The final microstructure contained Al3Ce, α–Al, Al3Ni, and Al9Co2 phases. Isothermal annealing of the as-quenched samples in the range of 275–285 °C showed that both crystallization reactions occurred through a nucleation and growth process. Continuous heating DSC measurements following pre-anneals for different times were also carried out to study the crystallization kinetics and the stability of the material. The Avrami analysis of the isothermal DSC-curves revealed that the 3-dimensional nucleation and growth process became more dominant with increasing annealing temperature. The average specific grain boundary energy corresponded to high-angle grain boundaries and indicated independent nucleation events.
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between September 2016 - 6th March 2021. This data will be updated every 24 hours.