Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-6pznq Total loading time: 0.4 Render date: 2021-03-08T07:20:20.096Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

The structure and thermochemistry of K2CO3–MgCO3 glass

Published online by Cambridge University Press:  16 September 2019

Martin C. Wilding
Affiliation:
Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, U.K.; and Department of Geosciences, Stony Brook University, Stony Brook, New York 11794, USA
Brian L. Phillips
Affiliation:
Department of Geosciences, Stony Brook University, Stony Brook, New York 11794, USA
Mark Wilson
Affiliation:
Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, U.K.
Geetu Sharma
Affiliation:
Peter A. Rock Thermochemistry Laboratory, University of California, Davis, California 95616, USA
Alexandra Navrotsky
Affiliation:
Peter A. Rock Thermochemistry Laboratory, University of California, Davis, California 95616, USA
Paul A. Bingham
Affiliation:
Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, U.K.
Richard Brooker
Affiliation:
School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, U.K.
John B. Parise
Affiliation:
Department of Geosciences, Stony Brook University, Stony Brook, New York 11794, USA
Corresponding
Get access

Abstract

Carbonate glasses can be formed routinely in the system K2CO3–MgCO3. The enthalpy of formation for one such 0.55K2CO3–0.45MgCO3 glass was determined at 298 K to be 115.00 ± 1.21 kJ/mol by drop solution calorimetry in molten sodium molybdate (3Na2O·MoO3) at 975 K. The corresponding heat of formation from oxides at 298 K was −261.12 ± 3.02 kJ/mol. This ternary glass is shown to be slightly metastable with respect to binary crystalline components (K2CO3 and MgCO3) and may be further stabilized by entropy terms arising from cation disorder and carbonate group distortions. This high degree of disorder is confirmed by 13C MAS NMR measurement of the average chemical shift tensor values, which show asymmetry of the carbonate anion to be significantly larger than previously reported values. Molecular dynamics simulations show that the structure of this carbonate glass reflects the strong interaction between the oxygen atoms in distorted carbonate anions and potassium cations.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

b)

Present Address: University of Manchester at Harwell, Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, U.K.

c)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

References

Angell, C.A.: Formation of glasses from liquids and biopolymers. Science 267, 19241935 (1995).CrossRefGoogle ScholarPubMed
Wilding, M.C., Wilson, M., Alderman, O.L.G., Benmore, C., Weber, J.K.R., Parise, J.B., Tamalonis, A., and Skinner, L.: Low-dimensional network formation in molten sodium carbonate. Sci. Rep. 6, 1–7 (2016).CrossRefGoogle ScholarPubMed
Wilding, M.C., Wilson, M., Ribeiro, M.C.C., Benmore, C.J., Weber, J.K.R., Alderman, O.L.G., Tamalonis, A., and Parise, J.B.: The structure of liquid alkali nitrates and nitrites. Phys. Chem. Chem. Phys. 19, 2162521638 (2017).CrossRefGoogle ScholarPubMed
Wilson, M., Ribeiro, M.C.C., Wilding, M.C., Benmore, C., Weber, J.K.R., Alderman, O., Tamalonis, A., and Parise, J.B.: Structure and liquid fragility in sodium carbonate. J. Phys. Chem. A 122, 10711076 (2018).CrossRefGoogle ScholarPubMed
Genge, M.J., Jones, A.P., and Price, G.D.: An infrared and Raman study of carbonate glasses-implications for carbonatite magmas. Geochim. Cosmochim. Acta 59, 927937 (1995).CrossRefGoogle Scholar
Sen, S., Kaseman, D.C., Colas, B., Jacob, D.E., and Clark, S.M.: Hydrogen bonding induced distortion of CO3 units and kinetic stabilization of amorphous calcium carbonate: Results from 2D C-13 NMR spectroscopy. Phys. Chem. Chem. Phys. 18, 2033020337 (2016).CrossRefGoogle Scholar
Eitel, W. and Skaliks, W.: Double carbonates of alkalis and alkaline earths. Z. Anorg. Allg. Chem. 183, 263286 (1929).CrossRefGoogle Scholar
Genge, M.J., Jones, A.P., and Price, G.D.: An infrared and Raman study of carbonate glasses-implications for the structure of carbonatite magmas. Geochim. Cosmochim. Acta 59, 927937 (1995).CrossRefGoogle Scholar
Genge, M.J., Price, G.D., and Jones, A.P.: Molecular dynamics simulations of CaCO3 melts to mantle pressures and temperatures—Implications for carbonatite magmas. Earth Planet. Sci. Lett. 131, 225238 (1995).CrossRefGoogle Scholar
Dobson, D.P., Jones, A.P., Rabe, R., Sekine, T., Kurita, K., Taniguchi, T., Kondo, T., Kato, T., Shimomura, O., and Urakawa, S.: In situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet. Sci. Lett. 143, 207215 (1996).CrossRefGoogle Scholar
Ragone, S.E., Datta, R.K., Roy, D.M., and Tuttle, O.F.: The system potassium carbonate-magnesium carbonate. J. Phys. Chem. 70, 33603361 (1966).CrossRefGoogle Scholar
Datta, R.K., Roy, D.M., Faile, S.P., and Tuttle, O.F.: Glass formation in carbonate systems. J. Am. Ceram. Soc. 47, 153 (1964).CrossRefGoogle Scholar
Forland, T. and Weyl, W.A.: formation of a sulfate glass. J. Am. Ceram. Soc. 33, 186187 (1950).CrossRefGoogle Scholar
MacFarlane, D.R.: Attempted glass formation in pure KHSO4. J. Am. Ceram. Soc. 67, C28 (1984).CrossRefGoogle Scholar
van Uitert, L.G. and Grodkiewicz, W.H.: Nitrate glasses. Mater. Res. Bull. 6, 283292 (1971).CrossRefGoogle Scholar
Jones, A.P., Genge, M., and Carmody, L.: Carbonate melts and carbonatites. In Carbon in Earth, Hazen, R.M., Jones, A.P., and Baross, J.A., eds. (The Mineralogical Society of America, Chantilly, Virginia, 2013); pp. 289322.CrossRefGoogle Scholar
Sharma, S.K. and Simons, B.: Raman study of K2CO3–MgCO3 glasses. In Carnegie Institute of Washington Yearbook, Vol. 79, H.S. Yoder, ed. (The Carnegie Institution of Washington, Washington DC, 1980); pp. 322326.Google Scholar
Navrotsky, A.: Progress and new directions in calorimetry: A 2014 perspective. J. Am. Ceram. Soc. 97, 33493359 (2014).CrossRefGoogle Scholar
Sahu, S.K., Boatner, L.A., and Navrotsky, A.: Formation and dehydration enthalpy of potassium hexaniobate. J. Am. Ceram. Soc. 100, 304311 (2017).CrossRefGoogle Scholar
Shivaramaiah, R. and Navrotsky, A.: Energetics of order-disorder in layered magnesium aluminum double hydroxides with inter layer carbonate. Inorg. Chem. 54, 32533259 (2015).CrossRefGoogle Scholar
Chai, L.A. and Navrotsky, A.: Thermochemistry of carbonate-pyroxene equilibria. Contrib. Mineral. Petrol. 114, 139147 (1993).CrossRefGoogle Scholar
Kiseleva, I., Navrotsky, A., Belitsky, I.A., and Fursenko, B.A.: Thermochemistry of natural potassium sodium calcium leonhardite and its cation-exchanged forms. Am. Mineral. 81, 668675 (1996).CrossRefGoogle Scholar
Navrotsky, A., Putnam, R.L., Winbo, C., and Rosen, E.: Thermochemistry of double carbonates in the K2CO3–CaCO3 system. Am. Mineral. 82, 546548 (1997).CrossRefGoogle Scholar
Tarina, I., Navrotsky, A., and Gan, H.: Direct calorimetric measurment of enthalpics in diopside-anorthite-wollastonaite melts at 1773 K. Geochim. Cosmochim. Acta 58, 36653673 (1994).CrossRefGoogle Scholar
Navrotsky, A., Maniar, P., and Oestrike, R.: Energetics of glasses in the system diopside-anorthite-forsterite. Contrib. Mineral. Petrol. 105, 8186 (1990).CrossRefGoogle Scholar
Hon, R., Weill, D.F., Kasper, R.B., and Navrotsky, A.: Enthalpies of mixing of glasses in the system albite-anorthite-diopside. Trans., Am. Geophys. Union 58, 1243 (1977).Google Scholar
Golubkova, A., Merlini, M., and Schmidt, M.W.: Crystal structure, high-pressure, and high-temperature behavior of carbonates in the K2Mg(CO3)2–Na2Mg(CO3)2 join. Am. Mineral. 100, 24582467 (2015).CrossRefGoogle Scholar
Shatskiy, A., Litasov, K.D., Palyanov, Y.N., and Ohtani, E.: Phase relations on the K2CO3–CaCO3–MgCO3 join at 6 GPa and 900–1400 °C: Implications for incipient melting in carbonated mantle domains. Am. Mineral. 101, 437447 (2016).CrossRefGoogle Scholar
Shatskiy, A., Borzdov, Y.M., Litasov, K.D., Sharygin, I.S., Palyanov, Y.N., and Ohtani, E.: Phase relationships in the system K2CO3–CaCO3 at 6 GPa and 900–1450 °C. Am. Mineral. 100, 223232 (2015).CrossRefGoogle Scholar
Shatskiy, A., Sharygin, I.S., Gavryushkin, P.N., Litasov, K.D., Borzdov, Y.M., Shcherbakova, A.V., Higo, Y., Funakoshi, K-i., Palyanov, Y.N., and Ohtani, E.: The system K2CO3–MgCO3 at 6 GPa and 900–1450 °C. Am. Mineral. 98, 15931603 (2013).CrossRefGoogle Scholar
Alekseev, A.I., Barinova, L.D., Rogacheva, N.P., and Kulinich, O.V.: Thermodynamic values of binary carbonate salts K2CO3·MgCO3·nH2O. J. Appl. Chem. USSR 57, 11681172 (1984).Google Scholar
Papenguth, H.W., Kirkpatrick, R.J., Montez, B., and Sandberg, P.A.: C-13 MAS NMR-spectroscopy of inorganic and biogenic carbonates. Am. Mineral. 74, 11521158 (1989).Google Scholar
Marc Michel, F., MacDonald, J., Feng, J., Phillips, B.L., Ehm, L., Tarabrella, C., Parise, J.B., Reeder, R.J.: Structural characteristics of synthetic amorphous calcium carbonate. Chem. Mater. 20, 47204728 (2008).CrossRefGoogle Scholar
Michel, F.M., McDonald, J., Feng, J., Phillips, B.L., Ehm, L., Tarabrella, C., Parise, J.B., and Reeder, R.J.: Structural characteristics of synthetic amorphous calcium carbonate. Geochim. Cosmochim. Acta 72, A626 (2008).Google Scholar
Sevelsted, T.F., Herfort, D., and Skibsted, J.: C-13 chemical shift anisotropies for carbonate ions in cement minerals and the use of C-13, Al-27 and Si-29 MAS NMR in studies of Portland cement including limestone additions. Cem. Concr. Res. 52, 100111 (2013).CrossRefGoogle Scholar
Moore, J.K., Surface, J.A., Brenner, A., Wang, L.S., Skemer, P., Conradi, M.S., and Hayes, S.E.: Quantitative identification of metastable magnesium carbonate minerals by solid-state C-13 NMR spectroscopy (vol 49, pg 657, 2015) . Environ. Sci. Technol. 49, 1986 (2015).CrossRefGoogle Scholar
Nebel, H., Neumann, M., Mayer, C., and Epple, M.: On the structure of amorphous calcium carbonate—A detailed study by solid-state NMR spectroscopy. Inorg. Chem. 47, 78747879 (2008).CrossRefGoogle ScholarPubMed
Kohn, S.C., Brooker, R.A., and Dupree, R.: C-13 MAS NMR—A method for studying CO2 speciation in glasses. Geochim. Cosmochim. Acta 55, 38793884 (1991).CrossRefGoogle Scholar
Brooker, R.A., Kohn, S.C., Holloway, J.R., McMillan, P.F., and Carroll, M.R.: Solubility, speciation and dissolution mechanisms for CO2 in melts on the NaAlO2–SiO2 join. Geochim. Cosmochim. Acta 63, 35493565 (1999).CrossRefGoogle Scholar
Su, Z.W. and Coppens, P.: Relativistic X-ray elastic scattering factors for neutral atoms Z = 1–54 from multiconfiguration Dirac–Fock wavefunctions in the 0–12 Å−1 sin θ/λ range, and six-Gaussian analytical expressions in the 0–6 Å−1 range (vol A53, pg 749, 1997). Acta Crystallogr., Sect. A: Found. Crystallogr. 54, 357 (1998).CrossRefGoogle Scholar
Hesse, K.F. and Simons, B.: Crystal structure of synthetic K2Mg(CO3)2. Z. Kristallogr. 161, 289292 (1982).CrossRefGoogle Scholar
Ihinger, P.D.: An experimental study of the interaction of water with granitic melt. Ph.D. thesis, California Institute of Technology, Pasedena, California, 1991.Google Scholar
Navrotsky, A.: High temperature reaction calorimetry applied to metastable and nanophase materials. J. Therm. Anal. Calorim. 57, 653658 (1999).CrossRefGoogle Scholar
Navrotsky, A.: High-temperature oxide melt calorimetry of oxides and nitrides. J. Chem. Thermodyn. 33, 859871 (2001).CrossRefGoogle Scholar
Herzfeld, J. and Berger, A.E.: Sideband intensities in NMR-spectra of samples spinning at the magic angle. J. Chem. Phys. 73, 60216030 (1980).CrossRefGoogle Scholar
Eichele, K.: HBA. Ph.D. thesis, Universitaet Tuebingen, Tuebingen, Germany, 2015.Google Scholar
Tissen, J., Janssen, G.J.M., and Vandereerden, J.P.: Molecular dynamics simulation fo binary mixtures of molten alkali carboantes. Mol. Phys. 82, 101111 (1994).CrossRefGoogle Scholar
Costa, M.F. and Ribeiro, M.C.C.: Molecular dynamics of molten Li2CO3–K2CO3 (vol 138, pg 61, 2008). J. Mol. Liq. 142, 161 (2008).CrossRefGoogle Scholar
Ribeiro, M.C.C.: First sharp diffraction peak in the fragile liquid Ca0.4K0.6(NO3)1.4. Phys. Rev. B 61, 32973302 (2000).CrossRefGoogle Scholar
Ribeiro, M.C.C.: Ionic dynamics in the glass-forming liquid Ca0.4K0.6(NO3)1.4: A molecular dynamics study with a polarizable model. Phys. Rev. B 63, 0942051–09420510 (2001).CrossRefGoogle Scholar
Ribeiro, M.C.C.: Molecular dynamics study on the glass transition in Ca0.4K0.6(NO3)1.4. J. Phys. Chem. B 107, 95209527 (2003).CrossRefGoogle Scholar
Cromer, D.T. and Mann, J.B.: X-ray scattering functions compuited from numerical Hartree–Fock functions . Acta Crystallogr. A 24, 321324 (1968).CrossRefGoogle Scholar
Shen, G., Prakapenka, V.B., Rivers, M.L., and Sutton, S.R.: Structural investigation of amorphous materials at high pressures using the diamond anvil cell. Rev. Sci. Instrum. 74, 30213026 (2003).CrossRefGoogle Scholar
Kono, Y., Kenney-Benson, C., Hummer, D., Ohfuji, H., Park, C., Shen, G., Wang, Y., Kavner, A., and Manning, C.E.: Ultralow viscosity of carbonate melts at high pressures. Nat. Commun. 5, 5:5091-5 (2014).CrossRefGoogle ScholarPubMed

Wilding et al. supplementary material

Wilding et al. supplementary material 1

Image 933 KB

Wilding et al. supplementary material

Wilding et al. supplementary material 2

File 3 MB

Wilding et al. supplementary material

Wilding et al. supplementary material 3

Image 918 KB

Wilding et al. supplementary material

Wilding et al. supplementary material 4

Image 926 KB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 49
Total number of PDF views: 171 *
View data table for this chart

* Views captured on Cambridge Core between 16th September 2019 - 8th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The structure and thermochemistry of K2CO3–MgCO3 glass
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The structure and thermochemistry of K2CO3–MgCO3 glass
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The structure and thermochemistry of K2CO3–MgCO3 glass
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *