Skip to main content Accessibility help
×
Home

Sol-gel coating of YBa2Cu3O7−x with TiO2 for enhanced anisotropic grain growth

Published online by Cambridge University Press:  31 January 2011

James G. Fagan
Affiliation:
New York State College of Ceramics at Alfred University, Alfred, New York 14802
V.R.W. Amarakoon
Affiliation:
New York State College of Ceramics at Alfred University, Alfred, New York 14802
Get access

Abstract

This investigation focused on the effects of TiO2 additions (2.5–5 mol%) incorporated via sol-gel coating of powders on sintering behavior, microstructure development, electrical resistivity, and magnetic susceptibility of YBa2Cu3O7−x. Specimens were sintered at ≤ 960 °C for 6 h in all cases. TEM analysis indicated the sol-gel coating to be uniformly distributed around each particle and of thickness ∼ 20 to 40 nm. The addition of TiO2 was seen to reduce the sintering temperature by up to ∼ 200 °C, indicating the formation of a liquidus phase below that normally reported for YBa2Cu3O7-x. Grain growth and grain anisotropy behavior were influenced by TiO2 addition. A maximum in density, grain size, and anisotropy was achieved with 2.5 mol% addition sintered at 930 °C. TiO2 addition was shown to result in the formation of greater amounts of secondary phases such as Y2BaCuO2, and BaCuO2, particularly at higher TiO2 levels and sintering temperatures. The use of TiO2 additions also altered the magnetic susceptibility with the optimum response occurring for samples with 2.5 mol% TiO2 addition when sintered at 930 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below.

References

1Jin, S.Tiefel, T. H.Sherwood, R. C.Davis, M. E.Dover, R. B. van, Kammlott, G.W.Fastnacht, R.A. and Keith, H.D.Appl. Phys. Lett. 52, 2074 (1988).Google Scholar
2Murakami, M.Morita, M.Doi, K. and Miyamoto, K.Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
3McGinn, P.J.Chen, W. and Black, M. A.Physica C 161, 198 (1989).CrossRefGoogle Scholar
4Kuharuangrong, S. and Taylor, J.J. Am. Ceram. Soc. 74, 1964 (1991).Google Scholar
5Salama, K.Selvamanickam, V. and Lee, D. F. in Processing and Properties of High Tc Superconductors, edited by Jin, S. (World Scientific, Singapore, 1992).Google Scholar
6Chen, N. Ph.D. Thesis Illinois Institute of Technology, 1991.Google Scholar
7Routbort, J. L.Rothman, S. J.Chen, N.Mundy, J. N. and Baker, J. E., Phys. Rev. B 43, 5489 (1991).CrossRefGoogle Scholar
8Goretta, K.C.Chen, N.Lanagan, M.T.Wu, W.Singh, J.P., Olson, R.A., Routbort, J. L. and Poeppel, R. B. in Proceedings Powder Metallurgy World Congress, San Francisco, CA, June 21-26, 1992 (unpublished).Google Scholar
9Shi, D.Capone, D.W.Goudy, G.T.Singh, J.P.Zaluzec, N.J. and Goretta, K.C.Mater. Lett. 6, 217 (1988).CrossRefGoogle Scholar
10McCallum, R.W.Verhoeven, J.D.Noack, M.A.Gibson, E.D.Laabs, F. C. and Finnemore, D. K.Adv. Ceram. Mater. 2 (3B), 388 (1987).CrossRefGoogle Scholar
11Bender, B.Toth, L.Spann, J.R.Lawrence, S., Wallace, J., Lewis, D.Osofsky, M.Fuller, W.Skelton, E.Wolf, S.Qadri, S. and Gubser, D.Adv. Ceram. Mater. 2 (3B), 506 (1987).CrossRefGoogle Scholar
12Hwang, N.M.Park, Y.K.Lee, H.K.Han, J.H.Bahng, G.W.Lee, K. W.Moon, H. G. and Park, J. C.J. Am. Ceram. Soc. 71, C210 (1988).CrossRefGoogle Scholar
13Baliga, S. and Jain, A.L.Appl. Phys. A 49, 139 (1989).CrossRefGoogle Scholar
14Aselage, T. and Keefer, K.J. Mater. Res. 3, 1279 (1988).CrossRefGoogle Scholar
15Rodriguez, M.A.Snyder, R.L.Chen, B.J.Mathis, D.P.Misture, S.T., Frechette, V. D.Zorn, G.Gobel, H. E. and Seebacher, B. Physica C (unpublished research).Google Scholar
16Bloom, I.Tani, B.S.Hash, M.C.Shi, D., Patel, M.A.Goretta, K.C., Chen, N. and Capone, D. W. II , J. Mater. Res. 4, 1093 (1989).CrossRefGoogle Scholar
17Shi, K.S. and Chung, D.D.L. in High Temperature Superconducting Compounds II, edited by Whang, S. H.DasGupta, A. and Laibowitz, R. (TMS Publications, Warrendale, PA, 1990).Google Scholar
18Tiefel, T.H.Jin, S., Sherwood, R.C.Davis, M.E.Kammlott, G.W., Gallagher, P. K.Johnson, D. W.Fastnacht, R. A. and Rhodes, W. W.Mater. Lett. 7, 363 (1989).CrossRefGoogle Scholar
19Jung, J.Mohamed, M.A.K.Cheng, S.C. and Franck, J.P.Phys. Rev. B 42, 6181 (1990).CrossRefGoogle Scholar
20Weinberger, B.R.Lynds, L.Potrepka, D.M.Snow, D.B.Burila, C.T., Eaton, H. E.Cippolli, R.Tang, Z. and Budnik, J. J.Physica C 161, 91 (1989).CrossRefGoogle Scholar
21Gangopadhyay, A. K. and Mason, T. O.Physica C 178, 64 (1991).CrossRefGoogle Scholar
22Khan, H. R.Francavilla, T. L.Hein, R. A.Pande, C. S.Qadri, S. B.Soulen, R. J. Jr. , and Wolf, S.A.J. Supercon. 3, 189 (1990).CrossRefGoogle Scholar
23Peterson, G. G.Weinberger, B. R.Lynds, L. and Krasinski, H. A.J. Mater. Res. 3, 605 (1988).CrossRefGoogle Scholar
24Talik, E.Szade, J. and Heimann, J.Physica C 165, 434 (1990).CrossRefGoogle Scholar
25Kammlott, G. W.Tiefel, T. H. and Jin, S.Appl. Phys. Lett. 56, 2459 (1990).CrossRefGoogle Scholar
26Kim, C. J.Kim, K.B.Lee, K.W.Lee, C.T.Hong, G.W.Cheng, I.S., and Won, D. Y.Mater. Lett. 11, 24 (1991).CrossRefGoogle Scholar
27Romano, L. T.Schilling, O. F. and Grovenor, C. R. M.Physica C 178, 41 (1991).CrossRefGoogle Scholar
28Selmi, F. A. and Amarakoon, V. R. W.J. Am. Ceram. Soc. 71, 934 (1988).CrossRefGoogle Scholar
29Sainamthip, P. and V.Amarakoon, R.W.J. Am. Ceram. Soc. 71, C92 (1988).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 11 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 27th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-z76t5 Total loading time: 0.437 Render date: 2021-01-27T02:11:19.685Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Sol-gel coating of YBa2Cu3O7−x with TiO2 for enhanced anisotropic grain growth
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Sol-gel coating of YBa2Cu3O7−x with TiO2 for enhanced anisotropic grain growth
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Sol-gel coating of YBa2Cu3O7−x with TiO2 for enhanced anisotropic grain growth
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *