Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-x5fd4 Total loading time: 0.458 Render date: 2021-02-26T04:23:49.012Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Single-domain Yba2Cu3Oy thick films and fabrics prepared by an infiltration and growth process

Published online by Cambridge University Press:  31 January 2011

E. Sudhakar Reddy
Affiliation:
ACCESS e.V. Materials Sciences, Intzestrasse 5, D-52072 Aachen, Germany
J. G. Noudem
Affiliation:
ACCESS e.V. Materials Sciences, Intzestrasse 5, D-52072 Aachen, Germany
M. Tarka
Affiliation:
ACCESS e.V. Materials Sciences, Intzestrasse 5, D-52072 Aachen, Germany
G. J. Schmitz
Affiliation:
ACCESS e.V. Materials Sciences, Intzestrasse 5, D-52072 Aachen, Germany
Get access

Abstract

An infiltration and growth process has been developed to produce single-domain Yba2Cu3Oy(123) as thick films on various substrates or as self-supporting fabrics. Commercially available Y2O3 cloths of square woven or satin woven structure were infiltrated with liquid phases from a suitable source containing barium cuprates and copper oxides and subsequently converted into Y2BaCuO5(211) and −123 phases by a series of distinct peritectic reactions. Depending on the final form of 123, the Y2O3 cloth was either clamped firmly at corners to produce a self-supporting 123 fabric or placed on a suitable substrate to result in a thick film coating of 123. The source material for the liquid phase being in the form of solid blocks was placed at corners of the cloth in the case of free-standing 123 fabrics. In case of the thick film configuration the liquid phase powder was spread on the surface of the Y2O3 cloth. A small c-axis-oriented MgO or Nd(123) seed was used to generate an oriented 123 domain in the infiltrated fabric. The solidification process was optimized to transform the entire Y2O3 fabric into a single-domain 123. The microstructure of the single domain was optimized in terms of 211 size and content for high Jc. A detailed description of the process, the growth mechanism, the resulting microstructures was given, and basic superconducting properties of the new form of 123 are briefly discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Dou, S.X. and Liu, H.K., Supercond. Sci. Technol. 6, 297 (1993).CrossRefGoogle Scholar
2.Balachandran, U., Iyer, A.N., Haldar, P., and Motowidlo, L.R., JOM, 45, 54 (1993).CrossRefGoogle Scholar
3.Jin, S., Tiefel, T.H., Sherwood, R.C., Vandover, R.B., Davis, M.E., Kammlott, G.W., and Fastnacht, R.A., Phys. Rev. B 28, 1189 (1989).Google Scholar
4.Salama, K. and Lee, D.F., Supercond. Sci. Technol. 7, 177 (1994).CrossRefGoogle Scholar
5.Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
6.Todt, V.R., Sengupta, S., Shi, D., Hull, J.R., Sahm, P.R., McGinn, P.J., and Poeppel, R.B., J. Electron. Mater. 23, 1127 (1994).CrossRefGoogle Scholar
7.Sudhakar Reddy, E. and Rajasekharan, T., Supercond. Sci. Technol. 11, 523 (1998).CrossRefGoogle Scholar
8.Schmitz, G.J., Weiβ, H., and Wolters, Ch., Proc. of the ICMC '90: Topical conference on Materials Aspects of High Temperature Superconductors (1990), p. 335.Google Scholar
9.Lo, W., Cardwell, D.A., Dewhurst, C.D., and Dung, S.L., J. Mater. Res. 11, 786 (1996).CrossRefGoogle Scholar
10.Teshima, H., Morita, M., and Hashimoto, M., Physica C, 269, 179 (1996).CrossRefGoogle Scholar
11.Picard, P.G., Chaud, X., Beaugnon, E., Erruad, A., and Tournier, R., Mater. Sci. Eng. B 53, 66 (1998).CrossRefGoogle Scholar
12.Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).CrossRefGoogle Scholar
13.Marks, T.J., Belot, J.A., Hinds, B.J., Cher, J., Studebaker, D, Lei, J., Chang, R.P.H., Schindler, J.L., and Lannewurf, C.R., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics II, edited by Descu, S.B., Beach, D.B., and Van Buskirk, P.C. (Mater. Res. Soc. Symp. Proc. 415, Pittsburgh, PA, 1996), pp. 6778.Google Scholar
14.Regnier, P., Poissonet, S., Villars, G., and Louchet, C., Physica C 282–287, 2575 (1997).CrossRefGoogle Scholar
15.Li, Y. and Tanabe, K., J. Appl. Phys. 83, 7744 (1998).CrossRefGoogle Scholar
16.Minagawa, Y. and Shiohara, Y., Physica C 282–287, 581 (1997).CrossRefGoogle Scholar
17.Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Safian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hartfield, E., and Sikka, V.K., Appl. Phy. Lett. 69, 1795 (1996).CrossRefGoogle Scholar
18.Driscoll, J.L.M., Annu. Rev. Mater. Sci. 28, 421 (1998).CrossRefGoogle Scholar
19.Sudhakar Reddy, E. and Rajasekharan, T, Supercond. Sci. Technol. 11, 523 (1998).CrossRefGoogle Scholar
20.Langhorn, J.B. and Abell, J.S., Supercond. Sci. Technol. 11, 1 (1998).CrossRefGoogle Scholar
21.Langhorn, J.B. and Abell, J.S., Physica C 312, 169 (1999).CrossRefGoogle Scholar
22.Jones, A.R., Cardwell, D.A., and McAlford, N., J. Appl. Phys. 77, 1729 (1994).Google Scholar
23.Button, T.M., McN. Alford, N., Wellhofer, F., Shields, T.C., Abell, J.S., and Day, M.J., IEEE Trans. Magn. 27, 1434 (1991).CrossRefGoogle Scholar
24.Blanche, G.B. and Fincher, C.R. Jr., Supercond. Sci. Technol. 4, 69 (1991).CrossRefGoogle Scholar
25.Schmitz, G.J., Schmidt, J.C., and Tigges, A., Patent application DE 198 00 377. 3 (1998).Google Scholar
26.Schmitz, G.J., Schmidt, J.C., Tarka, M., and Tigges, A., Supercond. Sci. Technol. 11, 950 (1998).CrossRefGoogle Scholar
27.Sudhakar Reddy, E., Noudem, J.G., Tarka, M., and Schmitz, G.J., Supercond. Sci. Technol. 13, 716 (2000).CrossRefGoogle Scholar
28.Alarco, J.A., Olsson, E., Golden, S.J., Bhargava, A., Yamashita, T., Barry, J., and Mackinnon, I.D.R., J. Mater. Res. 12, 624 (1997).CrossRefGoogle Scholar
29.Fredricksson, H. and Nylen, T., Met. Sci. 16, 283 (1982).CrossRefGoogle Scholar
30.Sudhakar Reddy, E. and Rajasekharan, T., Mater. Lett. 35, 62 (1998).CrossRefGoogle Scholar
31.Schmitz, G.J., Laakman, J., Wolters, Ch., Rex, S., Gawalek, W., Habisreuther, T., Bruchlos, G., and Görnert, P., J. Mater. Res. 8, 2774 (1993).CrossRefGoogle Scholar
32.Sudhakar Reddy, E. and Rajasekharan, T., Physica C 279, 56 (1997).CrossRefGoogle Scholar
33.Hayashi, N., Diko, P., Nagashima, K., Yoo, S.I., Sakai, N., and Murakami, M., Mater. Sci. Eng. B 53, 104 (1998).CrossRefGoogle Scholar
34.Reddy, E.S., et al. (to be published).Google Scholar
35.Ogawa, N., Hirabayashi, I., and Tanaka, S., Physica C 177, 101 (1991).Google Scholar
36.Delamare, M.P., Herview, M., Wang, J., Provost, J., Monot, I., Verbist, K., and Van Tendeloo, G., Physica C 262, 220 (1996).CrossRefGoogle Scholar
37.Monot, I., Verbist, K., Hervieu, M., Laffez, P., Delamare, M.P., Wang, J., Desgardin, G., and VanTendeloo, G., Physica C 274, 253 (1997).CrossRefGoogle Scholar
38.Gawalek, W., Habisreuther, T., Fischer, K., Bruchlos, G., and Görnert, P., Cryogenics 33, 65 (1993).CrossRefGoogle Scholar
39.Pinol, S., Sandiumenge, F., Martinez, B., Gomis, V., Fontcuberta, J., Obradors, X., Snoeck, E., and Roucau, C., Appl. Phys. Lett. 65, 1448 (1994).CrossRefGoogle Scholar
40.Delamare, M.P., Monot I, I., Wang, J., Provost, J., and Desgardin, G., Supercond. Sci. Technol. 9, 534 (1996).CrossRefGoogle Scholar
41.Sauerzopf, F.M., Wiesinger, H.P., Kritscha, W., Weber, H.W., Frischherz, M.C., and Gerstenberg, H., Cryogenics 33, 8 (1993).CrossRefGoogle Scholar
42.Weinstein, R., Sawh, R., Yanru, R., and Parks, D., Mater. Sci. Eng. B 53, 38 (1998).CrossRefGoogle Scholar
43.Weber, H.W., Proc. 10th Anniversary HTS Workshop (World Scientific, Singapore, 1996), p. 163.Google Scholar
44.Civale, L., Marweek, A.D., Worthington, T.K., and Kirk, M.A., Phys. Rev. Lett. 67, 648 (1991).CrossRefGoogle Scholar
45.Selvamanickam, V., Mironova, M., and Salama, K., J. Mater. Res. 8, 249 (1993).CrossRefGoogle Scholar
46.Obradors, X., Puig, T., Mendoza, E., Plain, J., Figueras, J., Granados, X., Carrillo, A.E., Varesi, E., Sandiumenge, F., and Tixador, P., Supercond. Sci. Technol. 13, 879 (2000).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 21 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Single-domain Yba2Cu3Oy thick films and fabrics prepared by an infiltration and growth process
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Single-domain Yba2Cu3Oy thick films and fabrics prepared by an infiltration and growth process
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Single-domain Yba2Cu3Oy thick films and fabrics prepared by an infiltration and growth process
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *