Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-pgkvd Total loading time: 0.485 Render date: 2022-08-13T15:15:21.609Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Shear band multiplication aided by free volume underthree-point bending

Published online by Cambridge University Press:  31 January 2011

Jun Sun
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Get access

Abstract

Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) alloy samples in both rod and plate geometry were prepared. Different free volume states were obtained through thermal treatment. The plastic deformation ability of the BMGs was investigated through both a three-point bending test and compression test. The three-point bending results reveal the important role of free volume content on the formation of multiple shear bands, as the shear band propagation can be efficiently stopped due to the existence of the stress gradient from the surface to the neutral plane. In compression, the sample size rather than free volume controls the shear banding behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Johnson, W.L.Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999)CrossRefGoogle Scholar
2.Inoue, A.Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000)CrossRefGoogle Scholar
3.Wang, W.H., Dong, C., Shek, C.H.Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 (2004)CrossRefGoogle Scholar
4.Xing, L.Q., Li, Y., Ramesh, K.T., Li, J., Hufnagel, T.C.Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B 64, 180201 (2001)CrossRefGoogle Scholar
5.Zhang, Z.F., Eckert, J., Schultz, L.Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003)CrossRefGoogle Scholar
6.Zhang, Z.F., Zhang, H., Pan, X.F., Das, J., Eckert, J.Effect of aspect ratio on the compressive deformation and fracture behavior of Zr-based bulk metallic glass. Philos. Mag. Lett. 85, 513 (2005)CrossRefGoogle Scholar
7.Liu, Y.H., Wang, G., Wang, R.J., Zhao, D.Q., Pan, M.X., Wang, W.H.Super plastic bulk metallic glasses at room temperature. Science 315, 1385 (2007)CrossRefGoogle Scholar
8.Yao, K.F., Ruan, F., Yang, Y.Q., Chen, N.Superductile bulk metallic glass. Appl. Phys. Lett. 88, 122106 (2006)CrossRefGoogle Scholar
9.Schroers, J., Johnson, W.L.Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004)CrossRefGoogle Scholar
10.Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R., Greer, A.L.Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Philos. Mag. Lett. 85, 221 (2005)CrossRefGoogle Scholar
11.Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., Eckert, J.“Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005)CrossRefGoogle Scholar
12.Qiang, J.B., Zhang, W., Xie, G.Q., Inoue, A.Unusual room temperature ductility of a Zr-based bulk metallic glass containing nanoparticles. Appl. Phys. Lett. 90, 231907 (2007)CrossRefGoogle Scholar
13.Chen, L.Y., Fu, Z.D., Zhang, G.Q., Hao, X.P., Jiang, Q.K., Wang, X.D., Cao, Q.P., Franz, H., Liu, Y.G., Xie, H.S., Zhang, S.L., Wang, B.Y., Zeng, Y.W., Jiang, J.Z.New class of plastic bulk metallic glass. Phys. Rev. Lett. 100, 075501 (2008)CrossRefGoogle Scholar
14.Huang, Y.J., Shen, J., Sun, J.F.Bulk metallic glasses: Smaller is softer. Appl. Phys. Lett. 90, 081919 (2007)CrossRefGoogle Scholar
15.Wu, W.F., Han, Z., Li, Y.Size-dependent “malleable-to-brittle” transition in a bulk metallic glass. Appl. Phys. Lett. 93, 061908 (2008)CrossRefGoogle Scholar
16.Han, Z., Wu, W.F., Li, Y., Wei, Y.J., Gao, H.J.An instability index of shear band for plasticity in metallic glasses. Acta Mater. 57, 1367 (2009)CrossRefGoogle Scholar
17.Xie, S., George, E.P.Size-dependent plasticity and fracture of a metallic glass in compression. Intermetallics 16, 485 (2008)CrossRefGoogle Scholar
18.Murali, P., Ramamurty, U.Embrittlement of a bulk metallic glass due to sub-T g annealing. Acta Mater. 53, 1467 (2005)CrossRefGoogle Scholar
19.Launey, M.E., Busch, R., Kruzic, J.J.Effects of free volume changes and residual stresses on the fatigue and fracture behavior of a Zr–Ti–Ni–Cu–Be bulk metallic glass. Acta Mater. 56, 500 (2008)CrossRefGoogle Scholar
20.Li, N., Liu, L., Chen, Q., Pan, J., Chan, K.C.The effect of free volume on the deformation behaviour of a Zr-based metallic glass under nanoindentation. J. Phys. D: Appl. Phys. 40, 6055 (2007)CrossRefGoogle Scholar
21.Jiang, F., Zhao, Y.L., Zhang, L.C., Pan, S.B., Zhou, Y.G., He, L., Sun, J.Dependence of ductility on free volume in a Cu–Zr-based metallic glass. Adv. Eng. Mater. 11, 177 (2009)CrossRefGoogle Scholar
22.Yokoyama, Y., Fukaura, K., Inoue, A.Cast structure and mechanical properties of Zr–Cu–Ni–Al bulk glassy alloys. Intermetallics 10, 1113 (2002)CrossRefGoogle Scholar
23.Konovalov, I.I., Komissarov, V.A., Maslov, A.A., Orlov, V.K.Bulk amorphous plate production by a casting process. J. Non-Cryst. Solids 205–207, 536 (1996)CrossRefGoogle Scholar
24.Slipenyuk, A., Eckert, J.Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scr. Mater. 50, 39 (2004)CrossRefGoogle Scholar
25.Nagel, C., Ratzke, K., Schmidtke, E., Wolff, J., Geyer, U., Faupel, E.Free-volume changes in the bulk metallic glass Zr46.7Ti8.3Cu7.5Ni10Be27.5 and the undercooled liquid. Phys. Rev. B 57, 10224 (1998)CrossRefGoogle Scholar
26.Pekarskaya, E., Löffler, J.F., Johnson, W.L.Microstructural studies of crystallization of a Zr-based bulk metallic glass. Acta Mater. 51, 4045 (2003)CrossRefGoogle Scholar
27.Sergueeva, A.V., Mara, N.A., Kuntz, J.D., Lavernia, E.J., Mukherjee, A.K.Shear band formation and ductility in bulk metallic glass. Philos. Mag. 85, 2671 (2005)CrossRefGoogle Scholar
28.Song, S.X., Bei, H., Wadsworth, J., Nieh, T.G.Flow serration in a Zr-based bulk metallic glass in compression at low strain rates. Intermetallics 16, 813 (2008)CrossRefGoogle Scholar
29.Zhang, L.C., Jiang, F., Zhang, D.H., He, L., Sun, J., Fan, J.T., Zhang, Z.F.In-situ precipitated nanocrystal beneficial to enhanced plasticity of Cu–Zr based bulk metallic glasses. Adv. Eng. Mater. 10, 943 (2008)CrossRefGoogle Scholar
30.Inoue, A., Zhang, T., Masumoto, T.Reductilization of embrittled La–Al–Ni amorphous-alloys by viscous-flow deformation in a supercooled liquid region. J. Non-Cryst. Solids 156, 598 (1993)CrossRefGoogle Scholar
31.Hufnagel, T.C., El-Deiry, P., Vinci, R.P.Development of shear band structure during deformation of a Zr57Ti5Cu20Ni8Al10 bulk metallic glass. Scr. Mater. 43, 1071 (2000)CrossRefGoogle Scholar
32.Conner, R.D., Johnson, W.L., Paton, N.E., Nix, W.D.Shear bands and cracking of metallic glass plates in bending. J. Appl. Phys. 94, 904 (2003)CrossRefGoogle Scholar
33.Ravichandran, G., Molinari, A.Analysis of shear banding in metallic glasses under bending. Acta Mater. 53, 4087 (2005)CrossRefGoogle Scholar
34.Wu, F.F., Zhang, Z.F., Mao, S.X.Size-dependent shear fracture and global tensile plasticity of metallic glass. Acta Mater. 57, 257 (2009)CrossRefGoogle Scholar
35.Wu, F.F., Zhang, Z.F., Jiang, F., Sun, J., Shen, J.Multiplication of shear bands and ductility of metallic glass. Appl. Phys. Lett. 90, 191909 (2007)CrossRefGoogle Scholar
36.Bei, H., Xie, S., George, E.P.Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 (2006)CrossRefGoogle Scholar
37.Flores, K.M., Dauskardt, R.H.Fracture and deformation of bulk metallic glasses and their composites. Intermetallics 12, 1025 (2004)CrossRefGoogle Scholar
38.Han, Z.H., He, L., Hou, Y.L., Jiang, F., Sun, J.Understanding the mechanism for the embrittlement of a monolithic Zr-based bulk metallic glass by oxygen. Intermetallics 17, 553 (2009)CrossRefGoogle Scholar
39.Hajlaoui, K., Yavari, A.R., LeMoulec, A., Botta, W.J., Vaughan, F.G., Das, J., Greer, A.L., Kvick, A.Plasticity induced by nanoparticle dispersions in bulk metallic glasses. J. Non-Cryst. Solids 353, 327 (2007)CrossRefGoogle Scholar
40.Hajlaoui, K., Yavari, A.R., Dasc, J., Vaughan, G.Ductilization of BMGs by optimization of nanoparticle dispersion. J. Alloys Compd. 434–435, 6 (2007).CrossRefGoogle Scholar
41.Fan, C., Ott, R.T., Hufnagel, T.C.Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 (2002)CrossRefGoogle Scholar
42.Jiang, F., Zhang, Z.B., He, L., Sun, J., Zhang, H., Zhang, Z.F.The effect of primary crystallizing phases on mechanical properties of Cu46Zr47Al7 bulk metallic glass composites. J. Mater. Res. 21, 2638 (2006)CrossRefGoogle Scholar
43.Jiang, F., Zhao, Y.L., Zhang, L.C., Pan, S.B., He, L., Sun, J., Zhou, Y.G.The coupling effect of small nanocrystals and free volume on the ductility of Cu46Zr47Al7 bulk metallic glass alloy. Adv. Eng. Mater. 11, 374 (2009)CrossRefGoogle Scholar
44.Wright, W.J., Saha, R., Nix, W.D.Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans. 42, 642 (2001)CrossRefGoogle Scholar
45.Schuh, C.A., Nieh, T.G.A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003)CrossRefGoogle Scholar
46.Wang, K., Fujita, T., Zeng, Y.Q., Nishiyama, N., Inoue, A., Chen, M.W.Micromechanisms of serrated flow in a Ni50Pd30P20 bulk metallic glass with a large compression plasticity. Acta Mater. 56, 2834 (2008)CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Shear band multiplication aided by free volume underthree-point bending
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Shear band multiplication aided by free volume underthree-point bending
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Shear band multiplication aided by free volume underthree-point bending
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *