Skip to main content Accessibility help

Self-consistent spin fluctuation spectrum and correlated electronic structure of actinides

Published online by Cambridge University Press:  08 February 2013

Tanmoy Das
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Jian-Xin Zhu
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Matthias J. Graf
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
E-mail address:
Get access


We present an overview of various theoretical methods with detailed emphasis on an intermediate Coulomb-U coupling model. This model is based on material-specific ab initio band structure from which correlation effects are computed via self-consistent GW-based self-energy corrections arising from spin fluctuations. We apply this approach to four isostructural intermetallic actinides PuCoIn5, PuCoGa5, PuRhGa5 belonging to the Pu-115 family, and UCoGa5 a member of the U-115 family. The 115 families share the property of spin–orbit split density of states enabling substantial spin fluctuations around 0.5 eV, whose feedback effect on the electronic structure creates mass renormalization and electronic “hot spots,” i.e., regions of large spectral weight. A detailed comparison is provided for the angle-resolved and angle-integrated photoemission spectra and de Haas–van Alphen experimental data as available. The results suggest that this class of actinides is adequately described by the intermediate Coulomb interaction regime, where both itinerant and incoherent features coexist in the electronic structure.

Invited Feature Review
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below.


Anderson, P.W.: Localized magnetic states in metals. Phys. Rev. 124, 41 (1961).CrossRefGoogle Scholar
Hewson, A.C.: The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, UK, 1983).Google Scholar
Si, Q., Abrahams, E., Dai, J., and Zhu, J-X.: Correlation effect in the iron pnictides. New J. Phys. 11, 045001 (2009).CrossRefGoogle Scholar
Curro, N.J., Caldwell, T., Bauer, E.D., Morales, L.A., Graf, M.J., Bang, Y., Balatsky, A.V., Thompson, J.D., and Sarrao, J.L.: Unconventional superconductivity in PuCoGa5. Nature 434, 622 (2005).CrossRefGoogle ScholarPubMed
Das, T., Markiewicz, R.S., and Bansil, A.: Optical model-solution to the competition between a pseudogap phase and a charge-transfer-gap phase in high-temperature cuprate superconductors. Phys. Rev. B 81, 174504 (2010).CrossRefGoogle Scholar
Das, T., Zhu, J-X., and Graf, M.J.: Spin fluctuations and the peak-dip-hump feature in the photoemission spectrum of actinides. Phys. Rev. Lett. 108, 017001 (2012).CrossRefGoogle ScholarPubMed
Moriya, T.: Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985).CrossRefGoogle Scholar
Moreno, N.O., Bauer, E.D., Sarrao, J.L., Hundley, M.F., Thompson, J.D., and Fisk, Z.: Thermodynamic and transport properties of single-crystalline UMGa5 (M=Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt). Phys. Rev. B 72, 035119 (2005).CrossRefGoogle Scholar
Kanekoa, K., Metokia, N., Landera, G.H., Bernhoeftd, N., Tokiwaa, Y., Hagaa, Y., Onukia, Y., and Ishiia, Y.: Neutron diffraction study of 5f itinerant antiferromagnet UPtGa5 and UNiGa5. Physica B 329333, 510511 (2003).CrossRefGoogle Scholar
Boulet, P., Colineau, E., Wastin, F., Rebizant, J., Javorský, P., Lander, G.H., and Thompson, J.D.: Tuning of the electronic properties in PuCoGa5 by actinide (U, Np) and transition-metal (Fe, Rh, Ni) substitutions. Phys. Rev. B 72, 104508 (2005).CrossRefGoogle Scholar
Sarrao, J.L., Morales, L.A., Thompson, J.D., Scott, B.L., Stewart, G.R., Wastin, F., Rebizant, J., Boulet, P., Colineau, E., and Lander, G.H.: Plutonium-based superconductivity with a transition temperature above 18 K. Nature 420, 297 (2002).CrossRefGoogle ScholarPubMed
Wastin, F., Boulet, P, Rebizant, J, Colineau, E, and Lander, G.H.: Advances in the preparation and characterization of transuranium systems. J. Phys. Condens. Matter 15, S2279 (2003).CrossRefGoogle Scholar
Bauer, E.D., Altarawneh, M.M., Tobash, P.H., Gofryk, K., Ayala-Valenzuela, O.E., Mitchell, J.N., McDonald, R.D., Mielke, C.H., Ronning, F., Griveau, J-C., Colineau, E., Eloirdi, R., Caciuffo, R., Scott, B.L., Janka, O., Kauzlarich, S.M., and Thompson, J.D.: Localized 5f electrons in superconducting PuCoIn5: Consequences for superconductivity in PuCoGa5. J. Phys. Condens. Matter 24, 052206 (2012).CrossRefGoogle Scholar
Grin, Y.N., Rogl, P., and Hiebl, K.: Structural chemistry and magnetic behavior of ternary uranium gallides U(Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt)Ga5. J. Less-Common Met. 121, 497 (1986).CrossRefGoogle Scholar
Ikeda, S., Tokiwa, Y., Okubo, T., Yamada, M., Matsuda, T.D., Inada, Y., Settai, R., Yamamoto, E., Haga, Y., and Onuki, Y.: Magnetic and Fermi surface properties of UTGa5 (T: Fe, Co and Pt). Physica B 329333, 610 (2003).CrossRefGoogle Scholar
Das, T., Durakiewicz, T., Zhu, J-X., Joyce, J.J., Sarrao, J.L., and Graf, M.J.: Imaging the formation of high-energy dispersion anomaly in the actinide UCoGa5. Phys. Rev. X 2, 041012 (2012).Google Scholar
Joyce, J.J., Wills, J.M., Durakiewicz, T., Butterfield, M.T., Guziewicz, E., Sarrao, J.L., Morales, L.A., Arko, A.J., and Eriksson, O.: Photoemission and the electronic structure of PuCoGa5. Phys. Rev. Lett. 91, 176401 (2003).CrossRefGoogle ScholarPubMed
Joyce, J.J., Durakiewicz, T., Graham, K.S., Bauer, E.D., Moore, D.P., Mitchell, J.N., Kennison, J.A., Martin, R.L., Roy, L.E., and Scuseria, G.E.: Pu electronic structure and photoemission spectroscopy. J. Phys. Conf. Ser. 273, 012023 (2011).CrossRefGoogle Scholar
Fujimori, S., Terai, K., Takeda, Y., Okane, T., Saitoh, Y., Muramatsu, Y., Fujimori, A., Yamagami, H., Tokiwa, Y., Ikeda, S., Matsuda, T.D., Haga, Y., Yamamoto, E., and Onuki, Y.: Itinerant U 5f band states in the layered compound UFeGa5 observed by soft x-ray angle-resolved photoemission spectroscopy. Phys. Rev. B 73, 125109 (2006).CrossRefGoogle Scholar
Pezzoli, M.E., Haule, K., and Kotliar, G.: Neutron magnetic form factor in strongly correlated materials. Phys. Rev. Lett. 106, 016403 (2011).CrossRefGoogle ScholarPubMed
Zhu, J-X., Tobash, P.H., Bauer, E.D., Ronning, F., Scott, B.L., Haule, K., Kotliar, G., Albers, R.C., and Wills, J.M.: Electronic structure and correlation effects in PuCoIn5 as compared to PuCoGa5. Europhys. Lett. 97, 57001 (2012).CrossRefGoogle Scholar
Martin, R.M.: Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). Erratum: 78, 1396(1997).CrossRefGoogle ScholarPubMed
Anisimov, V.I., Aryasetiawan, F., and Lichtenstein, A.I.: First-principles calculations of the electronic structure and spectra of strongly correlated systems: Dynamical mean-field theory. J. Phys. Condens. Matter 9, 767 (1997).CrossRefGoogle Scholar
Perdew, J.P., Ernzerhof, M., and Burke, K.: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982 (1996).CrossRefGoogle Scholar
Perdew, J.P. and Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
Svane, A. and Gunnarsson, O.: Localization in the self-interaction-corrected density-functional formalism. Phys. Rev. B 37, 9919 (1988).CrossRefGoogle ScholarPubMed
Szotek, Z., Temmerman, W.M., and Winter, H.: Application of the self-interaction correction to transition-metal oxides. Phys. Rev. B 47, 4029 (1993).CrossRefGoogle ScholarPubMed
Aryasetiawan, F. and Gunnarsson, O.: The GW method. Rep. Prog. Phys. 61, 237 (1998).CrossRefGoogle Scholar
Hedin, L.: New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139, A796 (1965).CrossRefGoogle Scholar
Metzner, W. and Vollhardt, D.: Correlated lattice fermions in d = ∞ dimensions. Phys. Rev. Lett. 62, 324 (1989). Erratum: 62, 1066(1989).CrossRefGoogle Scholar
Müller-Hartmann, E.: The Hubbard model at high dimensions: Some exact results and weak coupling theory. Z. Phys. B: Condens. Matter 76, 211 (1989).CrossRefGoogle Scholar
Georges, A., Kotliar, G., Krauth, W., and Rozenberg, M.: Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13 (1996).CrossRefGoogle Scholar
Kotliar, G., Savrasov, S.Y., Haule, K., Oudovenko, V.S., Parcollet, O., and Marianetti, C.A.: Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865 (2006).CrossRefGoogle Scholar
Onida, G., Reining, L., and Rubio, A.: Electronic excitations: Density-functional versus many-body Green’s function approaches. Rev. Mod. Phys. 74, 601 (2002).CrossRefGoogle Scholar
Held, K.: Electronic structure calculations using dynamical mean field theory. Adv. Phys. 56, 829 (2007).CrossRefGoogle Scholar
Haule, K. and Kotliar, G.: Arrested Kondo effect and hidden order in URu2Si2. Nat. Phys. 5, 796 (2009).CrossRefGoogle Scholar
Shim, J.H., Haule, K., and Kotliar, G.: Modelling the localized to itinerant electronic transition in the heavy fermion system CeIrIn5. Science 318, 1615 (2007).CrossRefGoogle Scholar
Choi, H.C., Min, B.I., Shim, J.H., Haule, K., and Kotliar, G.: Temperature-dependent Fermi surface evolution in heavy fermion CeIrIn5. Phys. Rev. Lett. 108, 016402 (2012).CrossRefGoogle ScholarPubMed
Pourovskii, L.V., Katsnelson, M.I., and Lichtenstein, A.I.: Correlation effects in electronic structure of PuCoGa5. Phys. Rev. B 73, 060506 (2006).CrossRefGoogle Scholar
Shick, A.B., Rusz, J., Kolorenc, J., Oppeneer, P.M., and Havela, L.: Theoretical investigation of electronic structure, electric field gradients, and photoemission of PuCoGa5 and PuRhGa5 superconductors. Phys. Rev. B 83, 155105 (2011).CrossRefGoogle Scholar
Perdew, J.P., Burke, S., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
Takimoto, T., Hotta, T., and Ueda, K.: Strong-coupling theory of superconductivity in a degenerate Hubbard model. Phys. Rev. B 69, 104504 (2004).CrossRefGoogle Scholar
Das, T. and Balatsky, A.V.: Two energy scales in the magnetic resonance spectrum of electron and hole doped pnictide superconductors. Phys. Rev. Lett. 106, 157004 (2011).CrossRefGoogle ScholarPubMed
Das, T. and Balatsky, A.V.: Stripes, spin resonance, and nodeless d-wave pairing symmetry in Fe2Se2-based layered superconductors. Phys. Rev. B 84, 014521 (2011).CrossRefGoogle Scholar
Das, T. and Balatsky, A.V.: Modulated superconductivity due to vacancy and magnetic order in AyFe2x-2Se2 [A = Cs, K,( Tl, Rb), (Tl, K)] iron-selenide super-conductors. Phys. Rev. B 84, 115117 (2011).CrossRefGoogle Scholar
Bickers, N.E., Scalapino, D.J., and White, S.R.: Conserving approximations for strongly correlated electron systems: Bethe-Salpeter equation and dynamics for the two-dimensional Hubbard model. Phys. Rev. Lett. 62, 961 (1989).CrossRefGoogle ScholarPubMed
Markiewicz, R.S., Sahrakorpi, S., and Bansil, A.: Paramagnon-induced dispersion anomalies in the cuprates. Phys. Rev. B 76, 174514 (2007).CrossRefGoogle Scholar
Ward, J.C.: An identity in quantum electrodynamics. Phys. Rev. 78, 182 (1950).CrossRefGoogle Scholar
Piekarz, P., Parlinski, K., Jochym, P.T., Olés, A.M., Sanchez, J-P., and Rebizant, J.: First-principles study of phonon modes in PuCoGa5 superconductor. Phys. Rev. B 72, 014521 (2005).CrossRefGoogle Scholar
Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., and Luitz, J.: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (K. Schwarz, Tech. Universität, Wien, Austria, 2001).Google Scholar
Kunes, J., Novák, P., Schmid, R., Blaha, P., and Schwarz, K.: Electronic structure of fcc Th: Spin-orbit calculation with 6p1/2 local orbital extension. Phys. Rev. B 64, 153102 (2001).CrossRefGoogle Scholar
Ophale, I., Elgazzar, S., Koepernik, K., and Oppeneer, P.M.: Electronic structure of the Pu-based superconductor PuCoGa5 and of related actinide-115 compounds. Phys. Rev. B 70, 104504 (2004).Google Scholar
Maehira, T., Hotta, T., Ueda, K., and Hasegawa, A.: Electronic structure and the Fermi surface of PuCoGa5 and NpCoGa5. Phys. Rev. Lett. 90, 207007 (2003).CrossRefGoogle ScholarPubMed
Graf, J., Gweon, G-H., McElroy, K., Zhou, S.Y., Jozwiak, C., Rotenberg, E., Bill, A., Sasagawa, T., Eisaki, H., Uchida, S., Takagi, H., Lee, D-H., and Lanzara, A.: Universal high energy anomaly in the angle-resolved photoemission spectra of high temperature superconductors: Possible evidence of spinon and holon branches. Phys. Rev. Lett. 98, 067004 (2007).CrossRefGoogle ScholarPubMed
Xie, B.P., Yang, K., Shen, D.W., Zhao, J.F., Ou, H.W., Wei, J., Gu, S.Y., Arita, M., Qiao, S., Namatame, H., Taniguchi, M., Kaneko, N., Eisaki, H., Tsuei, K.D., Cheng, C.M., Vobornik, I., Fujii, J., Rossi, G., Yang, Z.Q., and Feng, D.L.: High-energy scale revival and giant kink in the dispersion of a cuprate superconductor. Phys. Rev. Lett. 98, 147001 (2007).CrossRefGoogle ScholarPubMed
Valla, T., Kidd, T.E., Yin, W-G., Gu, G.D., Johnson, P.D., Pan, Z-H., and Fedorov, A.V.: High-energy kink observed in the electron dispersion of high-temperature cuprate superconductors. Phys. Rev. Lett. 98, 167003 (2007).CrossRefGoogle ScholarPubMed
Basak, S., Das, T., Lin, H., Nieminen, J., Lindroos, M., Markiewicz, R.S., and Bansil, A.: Origin of the high-energy kink in the photoemission spectrum of the high-temperature superconductor Bi2Sr2CaCu2O8. Phys. Rev. B 80, 214520 (2009).CrossRefGoogle Scholar
Yeh, J.J. and Lindau, I.: Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. At. Data Nucl. Data Tables 32, 1 (1985).CrossRefGoogle Scholar
Iwasawa, H., Yoshida, Y., Hase, I., Shimada, K., Namatame, H., Taniguchi, M., and Aiura, Y.: High-energy anomaly in the band dispersion of the ruthenate superconductor. Phys. Rev. Lett. 109, 066404 (2012).CrossRefGoogle ScholarPubMed
Durakiewicz, T., Riseborough, P.S., Olson, C.G., Joyce, J.J., Oppeneer, P.M., Elgazzar, S., Bauer, E.D., Sarrao, J.L., Guziewicz, E., Moore, D.P., Butterfield, M.T., and Graham, K.S.: Observation of a kink in the dispersion of f-electrons. Europhys. Lett. 84, 37003 (2008).CrossRefGoogle Scholar
Lanzara, A., Bogdanov, P.V., Zhou, X.J., Kellar, S.A., Feng, D.L., Lu, E.D., Yoshida, T., Eisaki, H., Fujimori, A., Kishio, K., Shimoyama, J-I., Nodak, T., Uchidak, S., Hussain, Z., and Shen, Z-X.: Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. Nature 412, 510 (2001).CrossRefGoogle ScholarPubMed
Shirley, D.A.: High-resolution x-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5, 4709 (1972).CrossRefGoogle Scholar
Troc, R., Bukowski, Z., Sukowski, C., Misiorek, H., Morkowski, J.A., Szajek, A., and Chekowska, G.: Electronic structure, magnetic, and transport studies of single-crystalline UCoGa5. Phys. Rev. B 70, 184443 (2004).CrossRefGoogle Scholar
Wills, J.M., Eriksson, O., Delin, A., Andersson, P.H., Joyce, J.J., Durakiewicz, T., Butterfield, M.T., Arko, A.J., Moore, D.P, and Morales, L.A.: A novel electronic configuration of the 5f states in δ-plutonium as revealed by the photo-electron spectra. J. Electron. Spectrosc. Relat. Phenom. 135, 163166 (2004).CrossRefGoogle Scholar
Arko, A.J., Joyce, J.J., Morales, L., Wills, J., Lashley, J., Wastin, F., and Rebizant, J.: Electronic structure of α-and δ-Pu from photoelectron spectroscopy. Phys. Rev. B 62, 1773 (2000).CrossRefGoogle Scholar
Savrasov, S.Y., Kotliar, G., and Abrahams, E.: Correlated electrons in δ-plutonium within a dynamical mean-field picture. Nature 410, 793 (2001).CrossRefGoogle ScholarPubMed
Shim, J.H., Haule, K., and Kotliar, G.: Fluctuating valence in a correlated solid and the anomalous properties of δ-plutonium. Nature 446, 513 (2007).CrossRefGoogle Scholar
Durakiewicz, T. and Joyce, J.J.(private communication).
Das, T., Markiewicz, R.S., and Bansil, A.: Emergence of non-Fermi-liquid behavior due to Fermi surface reconstruction in the underdoped cuprate superconductors. Phys. Rev. B 81, 184515 (2010).CrossRefGoogle Scholar
Ikeda, S., Tokiwa, Y., Okubo, T., Haga, Y., Yamamoto, E., Inada, Y., Settai, R., and Onuki, Y.: Magnetic and Fermi surface properties of UCoGa5 and URhGa5. J. Nucl. Sci. Technol. 3, 206 (2002).CrossRefGoogle Scholar
Metoki, N., Kaneko, K., Raymond, S., Sanchez, J-P., Piekarz, P., Parlinski, K., Oles, A.M., Ikeda, S., Matsuda, T.D., Haga, Y., Onuki, Y., and Lander, G.H.: Phonons in UCoGa5. Physica B 373, 1003 (2006).CrossRefGoogle Scholar
Noguchi, S. and Okuda, K.: Magnetism of ternary compounds U-T-Ga (T = transition elements). J. Magn. Magn. Mater. 104107, 57 (1992).CrossRefGoogle Scholar
Scalapino, D.J., Loh, E., and Hirsch, J.E.: d-wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190 (1986).CrossRefGoogle Scholar
Moriya, T. and Takimoto, T.: Anomalous properties around magnetic instability in heavy-electron systems. J. Phys. Soc. Jpn. 64, 960 (1995).CrossRefGoogle Scholar
Moore, K. and van der Laan, G.: Nature of the 5f states in actinide metals. Rev. Mod. Phys. 81, 235 (2009).CrossRefGoogle Scholar
Palstra, T.T.M., Menovsky, A.A., van den Berg, J., Dirkmaat, A.J., Kes, P.H., Nieuwenhuys, G.J., and Mydosh, J.A.: Superconducting and magnetic transitions in the heavy-fermion system URu2Si2. Phys. Rev. Lett. 55, 2727 (1985).CrossRefGoogle ScholarPubMed
Trovarelli, O., Geibel, C., Mederle, S., Langhammer, C., Grosche, F.M., Gegenwart, P., Lang, M., Sparn, G., and Steglich, F.: YbRh2Si2: Pronounced non-Fermi-liquid effects above a low-lying magnetic phase transition. Phys. Rev. Lett. 85, 626 (2000).CrossRefGoogle Scholar
Das, T.: Spin-orbit density wave induced hidden topological order in URu2Si2. Sci. Rep. 2, 596 (2012).CrossRefGoogle ScholarPubMed
Paschen, S., Lühmann, T., Wirth, S., Gegenwart, P., Trovarelli, O., Geibel, C., Steglich, F., Coleman, P., and Si, Q.: Hall-effect evolution across a heavy-fermion quantum critical point. Nature 432, 881885 (2004).CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 5
Total number of PDF views: 41 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 27th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-z76t5 Total loading time: 0.651 Render date: 2021-01-27T11:14:21.399Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Self-consistent spin fluctuation spectrum and correlated electronic structure of actinides
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Self-consistent spin fluctuation spectrum and correlated electronic structure of actinides
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Self-consistent spin fluctuation spectrum and correlated electronic structure of actinides
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *