Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-z4vvc Total loading time: 0.342 Render date: 2021-02-28T16:05:51.601Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Rapid synthesis of transition-metal borides by solid-state metathesis

Published online by Cambridge University Press:  03 March 2011

Lin Rao
Affiliation:
Department of Chemistry and Biochemistry and Solid State Science Center, University of California-Los Angeles, Los Angeles, California 90024-1569
Edward G. Gillan
Affiliation:
Department of Chemistry and Biochemistry and Solid State Science Center, University of California-Los Angeles, Los Angeles, California 90024-1569
Richard B. Kaner
Affiliation:
Department of Chemistry and Biochemistry and Solid State Science Center, University of California-Los Angeles, Los Angeles, California 90024-1569
Get access

Abstract

A rapid self-sustaining solid-state precursor route to transition-metal borides, boride solid solutions, and boride composites has been developed. Solid-state metathesis (SSM) reactions between transition-metal chlorides and magnesium boride (MgB2) produce crystalline borides and magnesium chloride. Boride solid solutions are formed using mixed chloride precursors. By using a third precursor, such as NaN3, boride-nitride composites are synthesized. The reaction products are characterized by powder x-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and inductively coupled plasma atomic absorption spectroscopy. These boride reactions become self-propagating when the adiabatic temperature is greater than the melting point of the by-product salt, MgCl2 (mp 987 K).

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below.

References

1Schwetz, K. A. and Lipp, A., in Ullmann's Encyclopedia of Industrial Chemistry, edited by Gerharz, W. and Yamamoto, Y. S. (VCH, Weinheim, FRG, 1985), 5th ed., Vol. A4, p. 295.Google Scholar
2Wentorf, R. H. Jr., in Encyclopedia of Chemical Technology, edited by Howe-Grant, M. (John Wiley and Sons, New York, 1992), 4th ed., Vol. 4, pp. 423430.Google Scholar
3Thomson, R., in The Physics and Chemistry of Carbides, Nitrides and Borides, edited by Freer, R. (Kluwer Academic Pub., Boston, MA, 1990), NATO ASI Series E, Vol. 185, p. 113.CrossRefGoogle Scholar
4(a) Avaritsiotis, J. N. and Howson, R. P., Thin Solid Films 77, 351 (1981). (b) Richardson, J. R. and Richotte, J. F., J. Vac. Sci. Technol. 6, 419 (1969).CrossRefGoogle Scholar
5Ransley, C. E., J. Metals 14, 129 (1962).Google Scholar
6(a) Mroz, C., Am. Ceram. Soc. Bull. 73, 78 (1994). (b) Bowen, K. T., Mater. Sci. Eng. 44, 1 (1980). (c) Steinitz, R., in Modern Materials, edited by Hausner, H. H. (Academic Press, New York, 1960), Vol. 2, p. 191.Google Scholar
7Tani, T. and Wada, S., J. Mater. Sci. 26, 3526 (1991).CrossRefGoogle Scholar
8Becker, A. J., in Proc. Symp. High Temp. Mater. Chem. II, edited by Munir, Z. A. and Cubicciotti, D. (Electrochem. Soc, Inc., Pennington, NJ, 1983), Vol. 83–7, p. 65.Google Scholar
9(a) Gallagher, M. K., Rhine, W. E., and Bowen, H. K., in Ultrastructure Processing of Advanced Ceramics, edited by Mackenzie, J. D. and Ulrich, D. R. (John Wiley and Sons, New York, 1988), pp. 901906. (b) Glavee, G. N., Klabunde, K. J., Sorenson, C. M., and Hafjapanayis, G. C., Langmuir 8, 881 (1992). (c) White, J. P. III, Deng, H., and Shore, S. G., Inorg. Chem. 30, 2338 (1991). (d) Reich, S., Suhr, H., Hanko, K., and Szepes, L., Adv. Mater. 4, 650 (1992).Google Scholar
10Axelbaum, R. L., Bates, S. E., Buhro, W. E., Frey, C., Kelton, K. F., Lawton, S. A., Rosen, L. J., and Sastry, S. M., Nanostructured Materials 2, 139 (1993).CrossRefGoogle Scholar
11(a) Casey, J. D. and Haggery, J. S., J. Mater. Sci. 22, 737 (1987). (b) Pierson, H. O. and Randich, E., Thin Solid Films 54, 119 (1978). (c) Pierson, H. O. and Mullendore, A. W., Thin Solid Films 95, 99 (1982).CrossRefGoogle Scholar
12Su, K. and Sneddon, L. G., Chem. Mater. 5, 1659 (1993).CrossRefGoogle Scholar
13Roy, S. K., Boswas, A., and Banerjee, S., Bull. Mater. Sci. 16, 347 (1993).CrossRefGoogle Scholar
14(a) Hoke, D. A., Meyers, M. A., Meyer, L. W., and Gray, G. T. III, Metall. Trans. A 23A, 77 (1992). (b) Kecskes, L. J., Kotttke, T., and Niiler, A., J. Am. Ceram. Soc. 73, 1274 (1990).CrossRefGoogle Scholar
15(a) Wiley, J. B. and Kaner, R. B., Science 255, 1093 (1992). (b) Wiley, J. B., Bonneau, P. R., Treece, R. E., Jarvis, R. F., Gillan, E. G., Rao, L., and Kaner, R. B., in Supermolecular Architecture: Synthetic Control in Thin Films and Solids, edited by Bein, T. (Am. Chem. Soc. Symp. Series 499, 1991), p. 369. (c) Treece, R. E., Gillan, E. G., Jacubinas, R. M., Wiley, J. B., and Kaner, R. B., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M. J., Klemperer, W. J., and Brinker, C. J. (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), p. 169.CrossRefGoogle Scholar
16(a) Bonneau, P. R., Jarvis, R. F. Jr., and Kaner, R. B., Nature 349, 510 (1991). (b) Bonneau, P. R., Jarvis, R. F. Jr., and Kaner, R. B., Inorg. Chem. 31, 2127 (1992). (c) Parkin, I. P. and Rowley, A. T., Polyhedron 12, 2961 (1993). (d) Bonneau, P. R. and Kaner, R. B., Inorg. Chem. 32, 6084 (1993).CrossRefGoogle Scholar
17(a) Wiley, J. B., Gillan, E. G., and Kaner, R. B., Mater. Res. Bull. XXVIII, 893 (1993). (b) Hector, A. and Parkin, I. P., Polyhedron 12, 1855 (1993).CrossRefGoogle Scholar
18(a) Fitzmaurice, J. C., Hector, A. L., and Parkin, I. P., Dalton Trans. 16, 2435 (1993). (b) Gillan, E. G. and Kaner, R. B., Inorg. Chem., in press.CrossRefGoogle Scholar
19Rao, L. and Kaner, R. B., Inorg. Chem. 33, 3210 (1994).CrossRefGoogle Scholar
20Treece, R. E., Macala, G. S., Rao, L., Franke, D., Eckert, H., and Kaner, R. B., Inorg. Chem. 32, 2745 (1993).CrossRefGoogle Scholar
21Warren, B. E., X-ray Diffraction (Dover Pub., Inc., New York, 1990), p. 253.Google Scholar
22Greenwood, N. N., Parish, R. V., and Thornton, P., Quart. Rev. 20, 441 (1966).CrossRefGoogle Scholar
23Binary Alloy Phase Diagrams, edited by Massalski, T. B. (ASM INTERNATIONAL, Materials Park, OH, 1990), 2nd ed.Google Scholar
24(a) Powder Diffraction File, Joint Committee on Powder Diffraction Standards; International Center for Diffraction Data, Swarthmore, PA, 1989. File no. 35–741 (TiB2), 34–423 (ZrB2), 12–234 (HfB2), 8–118 (VB2), 35–742 (NbB2), 8–115 (TaB2), 34–369 (CrB2), 6–682 (MoB2), 6–640 (MgB2), and 25–1280 (Ta). (b) Pearson's Handbook of Crystallographic Data for Intermetallic Phases, edited by Villars, P. and Calvert, L. D. (ASM INTERNATIONAL, Materials Park, OH, 1991), 2nd ed.Google Scholar
25CRC Handbook of Chemistry and Physics, edited by Weast, R. C. (CRC Press, Boca Raton, FL, 1983).Google Scholar
26Post, B., in Boron, Metallo-Boron Compounds and Boranes, edited by Adams, R. M. (Interscience Pub., New York, 1964), p. 311.Google Scholar
27Munir, Z. A., Ceram. Bull. 67, 342 (1988).Google Scholar
28Zhang, Y. and Stangle, G. C., J. Mater. Res. 8, 1703 (1993).CrossRefGoogle Scholar
29Merzhanov, A. G., in Combustion Processes in Chemical Technology and Metallurgy, edited by Merzhanov, A. G. (Chernogolovka, 1975).Google Scholar
30TMAX Fortran program by Richard M. Jacubinas, Department of Chemistry, University of California, Los Angeles.Google Scholar
31(a) Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry (Pergamon Press, New York, 1983), 5th ed. (b) JANAF Thermochemical Tables, edited by Lide, D. R. (Am. Chem. Soc. and Am. Instit. of Phys., New York, 1985), 3rd ed. (c) Barin, I., Knacke, O., and Kubaschewski, O., Thermochemical Properties of Inorganic Substances (Springer-Verlag, New York, 1977), suppl.Google Scholar
32Rao, L., Yu, P., and Kaner, R. B., Mater. Synth, and Process., in press.Google Scholar
33Greenwood, N. N., in Comprehensive Inorganic Chemistry, edited by Bailar, J. C., Emeleus, H. J., Nyholm, R., and Trotman-Dickenson, A. F. (Pergamon Press, New York, 1973), Vol. 1, pp. 697732.Google Scholar
34Duhart, P., Ann. Chim. (Paris) 7, Ser. 13, 339 (1962).Google Scholar
35Jacobson, A. J., in Solid State Chemistry: Compounds, edited by Cheetham, A. K. and Day, P. (Clarendon Press, Oxford, 1992), pp. 182233.Google Scholar
36Fergusson, J. E., in Halogen Chemistry, edited by Gutmann, V. (Academic Press, New York, 1967), Vol. 3, pp. 227302.CrossRefGoogle Scholar
37Rao, L. and Kaner, R. B., in Covalent Ceramics II: Non-Oxides, edited by Barren, A. R., Fischman, G. S., Fury, M. A., and Hepp, A. F. (Mater. Res. Soc. Symp. Proc. 327, Pittsburgh, PA, 1994), p. 227.Google Scholar
38Mason, K. G., Mellor's Inorganic and Theoretical Chemistry (John Wiley and Sons, Inc., New York, 1967), 6th ed., Vol. 8, Suppl. 2, p. 42.Google Scholar
39Lumsden, J., Thermodynamics of Molten Salt Mixtures (Academic Press, New York, 1966), p. 217.Google Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 237 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 28th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Rapid synthesis of transition-metal borides by solid-state metathesis
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Rapid synthesis of transition-metal borides by solid-state metathesis
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Rapid synthesis of transition-metal borides by solid-state metathesis
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *