Hostname: page-component-546b4f848f-zwmfq Total loading time: 0 Render date: 2023-05-31T16:12:34.914Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Preparation of Fine-grained BaTiO3 Ceramics by Spark Plasma Sintering

Published online by Cambridge University Press:  31 January 2011

Tomonari Takeuchi*
Affiliation:
National Institute of Advanced Industrial Science and Technology, AIST, Midorigaoka 1-8-31, Ikeda, Osaka, 563-8577 Japan
Claudio Capiglia
Affiliation:
Department of Chemistry, Faculty of Engineering, Mie University, Kamihama-cho 1515, Tsu, Mie, 514-8507 Japan
Nalini Balakrishnan
Affiliation:
National Institute of Advanced Industrial Science and Technology, AIST, Midorigaoka 1-8-31, Ikeda, Osaka, 563-8577 Japan
Yasuo Takeda
Affiliation:
Department of Chemistry, Faculty of Engineering, Mie University, Kamihama-cho 1515, Tsu, Mie, 514-8507 Japan
Hiroyuki Kageyama
Affiliation:
National Institute of Advanced Industrial Science and Technology, AIST, Midorigaoka 1-8-31, Ikeda, Osaka, 563-8577 Japan
*
a)Address all correspondence to this author.
Get access

Abstract

Dense BaTiO3 ceramics consisting of fine grains were prepared using fine powder (average grain size of 0.06 μm; BT006) as a starting material and the spark plasma sintering (SPS) method. The powder was densified to >95% of theoretical x-ray density by the SPS process, and the average grain size of the resulting ceramics was <0.5 μm; the particle size of the initial powder significantly affects the grain size of the resulting SPS pellets. Fixed-frequency (100 kHz), room-temperature permittivity measurements of the BT006-SPS ceramics showed relatively low values (3000–3500) compared with those (typically 5000) for SPS ceramics consisting of larger grains (approximately 1 μm). Lower permittivity was attributed to poor development of ferroelectric domains in the ceramics, which originated from incomplete development of the tetragonal structure as well as the presence of a local orthorhombic structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nowotny, J. and Rekas, M., Key Eng. Mater. 66/67, 45 (1992).CrossRefGoogle Scholar
Ota, T., Takahashi, J., and Yamai, I., Key Eng. Mater. 66/67, 185 (1999).CrossRefGoogle Scholar
Clark, I.J., Takeuchi, T., Ohtori, N., and Sinclair, D.C., J. Mater. Chem. 9, 83 (1999).CrossRefGoogle Scholar
Frey, M.H. and Payne, D.A., Phys. Rev. B 54, 3158 (1996).CrossRefGoogle Scholar
Kinoshita, K. and Yamaji, A., J. Appl. Phys. 47, 371 (1976).CrossRefGoogle Scholar
Hennings, D., Int. J. High Technol. Ceram. 3, 91 (1987).CrossRefGoogle Scholar
Shaikh, A.S., Vest, R.W., and Vest, G.M., IEEE Trans. Ultraso. Ferroelec. Frequency Control 36, 407 (1989).CrossRefGoogle Scholar
Caboche, G. and Niepce, J.C., in Dielectric Ceramics: Processing, Properties, and Applications, edited by Nair, K.M., Guha, J.P., and Okamoto, A. (Ceram. Trans. 32, Am. Ceram. Soc., Westerville, OH, 1993), p. 339.Google Scholar
Niepce, J.C., in Surface and Interface of Ceramic Materials, edited by Dufour, L.C., Monty, C., and Petot-Ervas, G. (Kluwer, Dordrecht, Germany, 1989), p. 521.CrossRefGoogle Scholar
Arlt, G., Hennings, D., and G. de With, J. Appl. Phys. 58, 1619 (1985).CrossRefGoogle Scholar
Uchino, K., Sadanaga, E., and Hirose, T., J. Am. Ceram. Soc. 72, 1555 (1989).CrossRefGoogle Scholar
Frey, M.H., Xu, Z., Han, P., and Payne, D.A., Ferroelectrics 206/207, 337 (1998).CrossRefGoogle Scholar
Oonishi, K., Morohashi, T., and Uchino, K., J. Ceram. Soc. Jpn. 97, 473 (1989).CrossRefGoogle Scholar
Buessem, W.R., Cross, L.E., and Goswami, A.K., J. Am. Ceram. Soc. 49, 36 (1966).CrossRefGoogle Scholar
Samara, G.A., Phys. Rev. 151, 378 (1966).CrossRefGoogle Scholar
Tokita, M., J. Soc. Powder Tech. Jpn. 30, 790 (1993).CrossRefGoogle Scholar
Kondoh, I., Tanaka, T., and Tamari, N., J. Ceram. Soc. Jpn. 102, 505 (1994).CrossRefGoogle Scholar
Tamari, N., Tanaka, T., Tanaka, K., Kondoh, I., Kawahara, M., and Tokita, M., J. Ceram. Soc. Jpn. 103, 740 (1995).CrossRefGoogle Scholar
Takeuchi, T., Tabuchi, M., Kageyama, H., and Suyama, Y., J. Am. Ceram. Soc. 82, 939 (1999).CrossRefGoogle Scholar
Takeuchi, T., E. Bétourné, Tabuchi, M., Kageyama, H., Kobayashi, Y., Coats, A., Morrison, F., Sinclair, D.C., and West, A.R., J. Mater. Sci. 34, 917 (1999).CrossRefGoogle Scholar
Takeuchi, T., Suyama, Y., Sinclair, D.C., and Kageyama, H., J. Mater. Sci. 36, 2329 (2001).CrossRefGoogle Scholar
Hilton, A.D. and Frost, R., Key Eng. Mater. 66/67, 145 (1992).CrossRefGoogle Scholar
Fukai, K., Hidaka, K., Aoki, M., and Abe, K., Ceram. Int. 16, 285 (1990).CrossRefGoogle Scholar
Hirose, N. and West, A.R., J. Am. Ceram. Soc. 79, 1633 (1996).CrossRefGoogle Scholar
Powder Diffraction File, Card No. 5–626 (International Center for Diffraction Data, Newton Square, PA), 1981.Google Scholar
Perry, C.H. and Hall, D.B., Phys. Rev. Lett. 15, 700 (1965).CrossRefGoogle Scholar
Schlag, S. and Eicke, H.F., Solid State Commun. 91, 883 (1994).CrossRefGoogle Scholar
M.J. Martín, Mendiola, J., and Zaldo, C., J. Am. Ceram. Soc. 81, 2542 (1998).Google Scholar
Waser, R., Integrated Ferroelectrics 15, 39 (1997).CrossRefGoogle Scholar
Mitoseriu, L., Ricinschi, D., Harnagea, C., Okuyama, M., Tsukamoto, T., and Tura, V., Jpn. J. Appl. Phys. 35, 5210 (1996).CrossRefGoogle Scholar
Sun, L., Chen, Y-F., Ma, W-H., Wang, L-W., Yu, T., Zhang, M-S., and Ming, N-B., Appl. Phys. Lett. 68, 3728 (1996).CrossRefGoogle Scholar
Nieto, E., Fernandez, J.F., Moure, C., and Duran, P., J. Mater. Sci. 30, 6243 (1995).CrossRefGoogle Scholar