Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-dxfhg Total loading time: 0.266 Render date: 2021-03-05T06:48:15.618Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Preparation and Properties of Novel Aerodynamic Pressure-sensitive Paint Via the Sol-gel Method

Published online by Cambridge University Press:  31 January 2011

Feng-Zhi Jiang
Affiliation:
The Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100080, China
Ren Xu
Affiliation:
The Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100080, China
Duo-Yuan Wang
Affiliation:
The Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100080, China
Xing-De Dong
Affiliation:
Beijing Institute of Aerodynamics, Beijing, 100074, China
Gui-Chun Li
Affiliation:
Beijing Institute of Aerodynamics, Beijing, 100074, China
Dao-Ben Zhu
Affiliation:
The Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100080, China
Lei Jiang
Affiliation:
The Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100080, China
Corresponding
E-mail address:
Get access

Abstract

A novel aerodynamic pressure-sensitive paint (PSP) was prepared by using the sol-gel process for measuring the pressure distribution variation on an aerodynamic surface with an oxygen-containing gas flow. In this PSP, RuII complexes as oxygen-sensitive probe molecules excited with visible light of 436 nm were dispersed into the organic modified silica matrix film prepared by the sol-gel method. A linear relationship between the emission intensity and the oxygen partial pressure was achieved in the airflow pressure range of 10.1–405 kPa, and the slope that represents the sensitivity of PSP for oxygen quenching reaches 0.75. A pressure distribution map was demonstrated showing a spatial resolution of 0.25 mm.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Woodmansee, M.A. and Dutton, J.C., Exp. Fluids 24, 163 (1998).CrossRefGoogle Scholar
2.Kavandi, J., Callis, J.B., Gouterman, M.P., Khalil, G., Wright, D., Green, E., Burns, D., and McLachlan, B., Rev. Sci. Instrum. 61, 3340 (1990).CrossRefGoogle Scholar
3.Morris, M.J., Donovan, J.F., Kegelman, J.T., Schwab, S.D., Levy, R.L., and Crites, R.C., AIAA J. 31, 419 (1993).CrossRefGoogle Scholar
4.Crites, R. and Benne, M., AIAA Pap. 95-0106 (1995).Google Scholar
5.Cler, D. and Lamb, M., J. Aircr. 33, 1109 (1996).CrossRefGoogle Scholar
6.Coyle, L.M., Chapman, D., Khalil, G., Schibli, E., and Gouterman, M., J. Lumin. 82, 33 (1999).CrossRefGoogle Scholar
7.Liu, T., Campbell, B.T., Burns, S.P., and Sullivan, J.P., Appl. Mech. Rev. 50, 227 (1997).CrossRefGoogle Scholar
8.Bell, J.H., Schairer, E.T., Hand, L.A., and Metha, R.D., Annu. Rev. Fluid Mech. 33, 155 (2001).CrossRefGoogle Scholar
9.Uibel, R., Khalil, G., Gouterman, M., Gallery, J., and Callis, J., AIAA Pap. 93-0179 (1993).Google Scholar
10.Gouterman, M.P., Kavandi, J.L., Gallery, J., and Callis, J.B., Euro pean Patent No. 0 472 243 A2 (26 Feb. 1992).Google Scholar
11.Volan, A. and Alati, L., Proceedings of the 14th International Congress on Instrumentation in Aerospace Simulation Facilities (ICIASF) (Inst. of Electrical and Electronics Engineers, New York, 1991), p. 10.Google Scholar
12.Bukov, A.P., Orlov, A.A., Mosharov, V.E., Radchenko, V.N., Pesetsky, V.A., Sorokin, A.V., Phonov, S.D., Alaty, L., and Colucci, V., Wind Tunnels and Wind Tunnel Test Techniques (Royal Aeronautical Society, London, United Kingdom, 1992), pp. 8.1, 8.11.Google Scholar
13.Mosharov, V., Kuzmin, M., Orlov, A., Radchenko, V., Sadovskii, N., and Troyanovsky, I., European Patent No. 0 558 771 A1 (8 Sept 1992).Google Scholar
14.Morris, M.J., Donovan, J.F., Kegeiman, J.T., Schwab, S.D., Levy, R.L., and Crites, R.C., AIAA Pap. 92-0264 (1992).Google Scholar
15.Morris, M.J., Benne, M.E., Crites, R.C., and Donovan, J.F., AIAA Pap. 93-0175 (1993).Google Scholar
16.Donovan, J.F., Morris, M.J., Benne, M.E., and Crites, R.C., AIAA Pap. 93-0176 (1993).Google Scholar
17.Crites, R.C., Benne, M.E., Morris, M.J., and Donovan, J.F., Wind Tunnels and Wind Tunnel Test Techniques (Royal Aeronautical Society, London, United Kingdom, 1992, pp. 9.1, 9.13.Google Scholar
18.Morris, M.J. and Donovan, J.F., AIAA Pap. 94-2231 (1994).Google Scholar
19.Sajben, M., AIAA J. 31, 2105 (1993).Google Scholar
20.McLachlan, B.G., Bell, J.H., Park, H., Kennelly, R.A., Schreiner, J.A., Smith, S.C., Strong, J.M., Gallery, J., and Gouterman, M., J. Aircr. 32, 217 (1995).CrossRefGoogle Scholar
21.McLachlan, B.G. and Bell, J.H., Exp. Therm. Fluid Sci. 10, 475 (1995).CrossRefGoogle Scholar
22.Puklin, E., Carlson, B., Gouin, S., Costin, C., Green, E., Ponomarev, S., Tanji, H., and Gouterman, M., J. Appl. Polym. Sci. 77, 2795 (2000).3.0.CO;2-K>CrossRefGoogle Scholar
23.Demas, J.N. and De, B.A.Graff, Anal. Chem. 63, 829A (1991).CrossRefGoogle Scholar
24.Mosharov, V., Radchenko, V., and Fonov, S., Luminescent pressure sensors in aerodynamic experiment. (Cent. Aerohydrodyn. Inst. (TsAGI), CWA Int. Corp., Moscow, Russia, 1997), p. 155.Google Scholar
25.Lippitsch, M.E., Pusterhofer, J., Leiner, M.J.P., and Wolfbeis, O.S., Anal. Chim. Acta. 205(1), 1 (1988).CrossRefGoogle Scholar
26.Xu, W., McDonough, R.C. III, Langsdorf, B., Demas, J.N., and DeGraff, B.A., Anal. Chem. 66, 4133 (1994).CrossRefGoogle Scholar
27.Watkins, A.N., Wenner, B.R., Jordan, J.D., Xu, W., Demas, J.N., and Bright, F.V., Appl. Spectrosc. 52, 750 (1998).CrossRefGoogle Scholar
28.Murtagh, M.T., Shahriari, M.R., and Krihak, M., Chem. Mater. 10, 3862 (1998).CrossRefGoogle Scholar
29.Colvin, A.E. Jr., U.S. Patent No. 5 517 313 (1996).Google Scholar
30.Krinak, M.K. and Shahriari, M.R., Electron. Lett. 32, 240 (1996).Google Scholar
31.Murtagh, M.T., Ackley, D.E., and Shahriari, M.R., Electron. Lett. 32, 447 (1996).CrossRefGoogle Scholar
32.McEvoy, A.K., McDonagh, C.M., and MacCraith, B.D., Analyst 121, 785 (1996).CrossRefGoogle Scholar
33.MacCraith, B.D., O’Keefe, G., McEvoy, A.K., McDonagh, C.M., McGilp, J.F., Kelly, B.O., O’Mahony, J.D., and Cavanagh, M., Opt. Eng. 33, 3861 (1994).CrossRefGoogle Scholar
34.MacCraith, B.D., O’Keefe, G., McDonagh, C.M., and McEvoy, A.K., Electron. Lett. 30, 888 (1994).CrossRefGoogle Scholar
35.Rickard, S.J., Washburn, A.E., Morris, M.J., and Donovan, J.F., SAE Trans. 104, 1416 (1996).Google Scholar
36.Dowgwillo, R.M., Morris, M.J., Donovan, J.F., and Benne, M.E., J. Aircr. 33, 109 (1996).CrossRefGoogle Scholar
37.Abbitt, J.D., Fuentes, C.A., and Carroll, B.F., Opt. Lett. 21, 1797 (1996).CrossRefGoogle Scholar
38.Bell, J.H. and McLachlan, B.G., Exp. Fluids 22, 78 (1997).CrossRefGoogle Scholar
39.Mendoza, D.R., AIAA J. 35, 1240 (1997).CrossRefGoogle Scholar
40.Taghavi, R., Raman, G, and Bencic, T., Exp. Fluids 26, 481 (1999).CrossRefGoogle Scholar
41.Watte, R.J. and Crosby, G.A., J. Am. Chem. Soc. 93, 3184 (1971).Google Scholar
42.Parker, C.A. and Rees, W.T., Analyst 85, 587 (1960).CrossRefGoogle Scholar
43.Demas, J.N. and Crosby, G.A., J. Am. Chem. Soc. 93, 2841 (1971).Google Scholar
44.Dawson, W.R. and Windsor, M.W., J. Phy. Chem. 72, 3251 (1968).CrossRefGoogle Scholar
45.Juris, A. and Balzani, V., Coord. Chem. Rev. 84, 85 (1988).CrossRefGoogle Scholar
46.Carraway, E.R., Demas, J.N., B.A. DeGraff, and J.R. Bacon, Anal. Chem. 63, 337 (1991).CrossRefGoogle Scholar
47.Demas, J.N., DeGraff, B.A., and Xu, W.Y., Anal. Chem. 67, 1377 (1995).CrossRefGoogle Scholar
48.Hartmann, P. and Trettnak, W., Anal. Chem. 68, 2615 (1996).CrossRefGoogle Scholar
49.Xu, W., Schmidt, R., Whaley, M., Demas, J.N., DeGraff, B.A., Karikari, E.K., and Farmer, B.L., Anal. Chem. 67, 3172 (1995).CrossRefGoogle Scholar
50.Brinker, C.J. and Scherer, G.W., J. Non-Cryst. Solids 70, 301 (1985).CrossRefGoogle Scholar
51.Schanze, K.S., Carroll, B.F., Korotkevitch, S., and Morris, M.J., AIAA Pap. 97-0386 (1997).Google Scholar
52.Lamont, P.J. and Hunt, B.L., J. Fluid. Mech. 100, 471 (1980).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 29 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Preparation and Properties of Novel Aerodynamic Pressure-sensitive Paint Via the Sol-gel Method
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Preparation and Properties of Novel Aerodynamic Pressure-sensitive Paint Via the Sol-gel Method
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Preparation and Properties of Novel Aerodynamic Pressure-sensitive Paint Via the Sol-gel Method
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *