Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-cs4hf Total loading time: 16.082 Render date: 2021-04-18T09:56:16.816Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Photoluminescence intensity of GaN films with widely varying dislocation density

Published online by Cambridge University Press:  31 January 2011

Yue Jun Sun
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D-10117 Berlin, Germany
Oliver Brandt
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D-10117 Berlin, Germany
Klaus H. Ploog
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D-10117 Berlin, Germany
Corresponding
E-mail address:
Get access

Abstract

We investigated the impact of the presence of dislocations on room-temperature photoluminescence intensity in GaN films grown by molecular beam epitaxy. To determine both screw and edge dislocation densities, we employed x-ray diffraction in conjunction with a geometrical model, which relate the width of the respective reflections to the polar and azimuthal orientational spread. There is no direct dependence of the emission efficiency on the density of either type of dislocation in the samples under investigation. We conclude that dislocations are not the dominant nonradiative recombination centers for GaN grown by molecular beam epitaxy.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Lester, S.D., Ponce, F.A., Craford, M.G., and Steigerwald, D.A., Appl. Phys. Lett. 66, 1249 (1995).CrossRefGoogle Scholar
2.Mukai, T., Takekawa, K., and Nakamura, S., Jpn. J. Appl. Phys. 37, 839 (1998).CrossRefGoogle Scholar
3.Hino, T., Tomiya, S., Miyajima, T., Yanashima, K., Hashimoto, S., and Ikeda, M., Appl. Phys. Lett. 76, 3421 (2000).CrossRefGoogle Scholar
4.Elsner, J., Jones, R., Heggie, M.I., Sitch, P.K., Haugk, M., Frauenheim, T., Öberg, S., and Briddon, P.R., Phys. Rev. B 58, 12571 (1998).CrossRefGoogle Scholar
5.Elsner, J., Jones, R., Sitch, P.K., Porezag, V.D., Elstner, M., Frauenheim, T., Heggie, M.I., Öberg, S., and Briddon, P.R., Phys. Rev. Lett. 79, 3672 (1997).CrossRefGoogle Scholar
6.Cherns, D., Henley, S.J., and Ponce, F.A., Appl. Phys. Lett. 78, 2691 (2001).CrossRefGoogle Scholar
7.Shi, J.Y., Yu, L.P., Wang, Y.Z., Zhang, G.Y., and Zhang, H., Appl. Phys. Lett. 80, 2293 (2002).CrossRefGoogle Scholar
8.Brandt, O., Muralidharan, R., Waltereit, P., Thamm, A., Trampert, A., Kiedrowski, H. von, and Ploog, K.H., Appl. Phys. Lett. 75, 4019 (1999).CrossRefGoogle Scholar
9.Lee, C.D., Sager, A., Feenstra, R.M., Inoki, C.K., Kuan, T.S., Sarney, W.L., and Salamanca-Riba, L., Appl. Phys. Lett. 79, 3428 (2001).CrossRefGoogle Scholar
10.Ng, H.M., Doppalapudi, D., Moustakas, T.D., Weimann, N.G., and Eastman, L.F., Appl. Phys. Lett. 73, 821 (1998).CrossRefGoogle Scholar
11.Metzger, T., Ho¨pler, R., Born, E., Ambacher, O., Stutzmann, M., Sto¨mmer, R., Schuster, M., Go¨bel, H., Christiansen, S., Albrecht, M., et al., Philos. Mag. A 77, 1013 (1998).Google Scholar
12.Kirchner, V., Fehrer, M., Figge, S., Heinke, H., Einfeldt, S., Hommel, D., Selke, H., and Ryder, P.L., Phys. Status Solidi B 216, 659 (1999).3.0.CO;2-T>CrossRefGoogle Scholar
13.Gay, P., Hirsch, P.B., and Kelly, A., Acta Metall. 1, 315 (1953).CrossRefGoogle Scholar
14.Dunn, C.O. and Koch, E.F., Acta Metall. 5, 548 (1957).CrossRefGoogle Scholar
15.Srikant, V., Speck, J.S., and Clarke, D.R., J. Appl. Phys. 82, 4286 (1997).CrossRefGoogle Scholar
16.Sun, Y.J., Brandt, O., Liu, T.Y., Trampert, A., Ploog, K.H., Bla¨sing, J., and Krost, A., Appl. Phys. Lett. 81, 4928 (2002).CrossRefGoogle Scholar
17.Grundmann, M., Christen, J., Bimberg, D., Fischer-Colbrie, A., and Hull, R., J. Appl. Phys. 66, 2214 (1989).CrossRefGoogle Scholar
18.Sugahara, T., Sato, H., Hao, M., Naoi, Y., Kurai, S., Tottori, S., Yamashita, K., Nishino, K., and Romano, S.S.L.T., Jpn. J. Appl. Phys. 37, 398 (1998).CrossRefGoogle Scholar
19.Gonzalez, J.C., Bunker, K.L., and Russell, P.E., Appl. Phys. Lett. 79, 1567 (2001).CrossRefGoogle Scholar
20.Zhang, X., Kung, P., Walker, D., Piotrowski, J., Rogalski, A., Samler, A., and Razeghi, M., Appl. Phys. Lett. 67, 2028 (1995).CrossRefGoogle Scholar
21.Hersee, S.D., Ramer, J., and Malloy, K.J., MRS Bull. 7, 54 (1997).Google Scholar
22.Ding, J., Chang, J.S.C., and Bujatti, M., Appl. Phys. Lett. 50, 1089 (1987).CrossRefGoogle Scholar
23.Kang, N.S., Zirkle, T.E., and Schroder, D.K., J. Appl. Phys. 72, 82 (1992).CrossRefGoogle Scholar
24.Weyher, J.L., Albreht, M., Wosin´ski, T., Nowak, G., Strunk, H.P., Porowski, S., Mater. Sci. Eng. B 80, 318 (2001).CrossRefGoogle Scholar
25.Lei, H., Leipner, H.S., Shreiber, J., Weyher, J.L., Wosin´ski, T., and Grzegory, I., J. Appl. Phys. 92, 6666 (2002).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 26 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 18th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Photoluminescence intensity of GaN films with widely varying dislocation density
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Photoluminescence intensity of GaN films with widely varying dislocation density
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Photoluminescence intensity of GaN films with widely varying dislocation density
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *