Skip to main content Accessibility help
×
Home

Optical properties of AlN determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry data

Published online by Cambridge University Press:  31 January 2011

D. J. Jones
Affiliation:
DuPont Central Research, E356–384 Experimental Station, Wilmington, Delaware 19880
R. H. French
Affiliation:
DuPont Central Research, E356–384 Experimental Station, Wilmington, Delaware 19880
H. Müllejans
Affiliation:
Max-Planck-Institut für Metallforschung, Seestraße 92, D-70174 Stuttgart, Germany
S. Loughin
Affiliation:
DuPont Central Research, E356–384 Experimental Station, Wilmington, Delaware 19880
A. D. Dorneich
Affiliation:
Max-Planck-Institut für Metallforschung, Seestraße 92, D-70174 Stuttgart, Germany
P. F. Carcia
Affiliation:
DuPont Central Research, E356-384 Experimental Station, Wilmington, Delaware 19880
Corresponding
Get access

Abstract

Precise and accurate knowledge of the optical properties of aluminum nitride (AlN) in the ultraviolet (UV) and visible (VIS) regions is important because of the increasing application of AlN in optical and electro-optical devices, including compact disks, phase shift lithography masks, and AlN/GaN multilayer devices. The interband optical properties in the vacuum ultraviolet (VUV) region of 6–44 eV have been investigated previously because they convey detailed information on the electronic structure and interatomic bonding of the material. In this work, we have combined spectroscopic ellipsometry with UV/VIS and VUV spectroscopy to directly determine the optical constants of AlN in this range, thereby reducing the uncertainty in the preparation of the low-energy data extrapolation essential for Kramers–Kronig analysis of VUV reflectance. We report the complex optical properties of AlN, over the range of 1.5–42 eV, showing improved agreement with theory when contrasted with earlier results.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Slack, G.A., J. Phys. Chem. Solids 34, 321 (1973).CrossRefGoogle Scholar
2.Slack, G.A. and McNelly, T.F., J. Cryst. Growth 34, 263 (1976).CrossRefGoogle Scholar
3.Slack, G.A. and McNelly, T.F., J. Cryst. Growth 42, 560 (1977).CrossRefGoogle Scholar
4.Sheppard, L.M., Ceram. Bull. 69, 1801 (1990).Google Scholar
5.Hejda, B. and Hauptmanová, K., Phys. Status Solidi 36, K95 (1969).CrossRefGoogle Scholar
6.Jones, D. and Lettington, A.H., Solid State Commun. 11, 701 (1972).CrossRefGoogle Scholar
7.Kobayashi, A., Sankey, O.F., Volz, S.M., and Dow, J.D., Phys. Rev. B 28, 935 (1983).CrossRefGoogle Scholar
8.Huang, M-Z. and Ching, W-Y., J. Phys. Chem. Solids 46, 977 (1985).CrossRefGoogle Scholar
9.Ching, W-Y. and Harmon, B.N., Phys. Rev. B 34, 5305 (1986).CrossRefGoogle Scholar
10.Kasowski, R.V. and Ohuchi, F.S., Phys. Rev. B 35, 9311 (1987).CrossRefGoogle Scholar
11.Xu, Y-N. and Ching, W-Y., Phys. Rev. B 48, 4335 (1993).CrossRefGoogle ScholarPubMed
12.Ruin, E., Alvarez, S., and Alimony, P., Phys. Rev. B 49, 7115 (1994).Google Scholar
13.Saloon, A.K., Kashyap, A., Nautiyal, T., and Auluck, S., Solid State Commun. 94, 1009 (1995).Google Scholar
14.Ohuchi, F.S., J. Phys. 49(10), C5783 (1988); J. Appl. Phys. 62, 2286 (1987).Google Scholar
15.Carcia, P.F., French, R.H., Sharp, K., Meth, J.S., and Smith, B.W., Proc. SPIE-Int. Soc. Opt. Eng. 2884, 255 (1996).Google Scholar
16.Carcia, P.F., French, R.H., Reilly, M.H., Lemon, M.F., and Jones, D.J., Appl. Phys. Lett. 70, 2371 (1997).CrossRefGoogle Scholar
17.McNeil, L.E., Grimsditch, M., and French, R.H., J. Am. Ceram. Soc. 76, 1132 (1993).CrossRefGoogle Scholar
18.Morita, M., Tsubouchi, K., and Mikoshiba, N., Jpn. J. Appl. Phys. 21, 1102 (1982).CrossRefGoogle Scholar
19.Radhakrishnan, G., J. Appl. Phys. 78, 6000 (1995).CrossRefGoogle Scholar
20.Yamashita, H., Fukui, K., Misawa, S., and Yoshida, S., J. Appl. Phys. 50, 896 (1979).CrossRefGoogle Scholar
21.Chu, T.L. and Elm, R.W. Jr, J. Electrochem. Soc. 122, 995 (1975).CrossRefGoogle Scholar
22.Aita, C.R., Kubiak, C.J.G, and Shih, F.Y.H, J. Appl. Phys. 66, 4360 (1989).CrossRefGoogle Scholar
23.Zarwasch, R., Rille, E., and Pulker, H.K., J. Appl. Phys 71, 5275 (1992).CrossRefGoogle Scholar
24.Kaplan, J.C. and Gerhardt, R.A., J. Mater. Res. 9, 2209 (1994).CrossRefGoogle Scholar
25.Perry, P.B. and Rutz, R.F., Appl. Phys. Lett. 33, 319 (1978).CrossRefGoogle Scholar
26.Bauer, J., Biste, L., and Bolze, D., Phys. Status Solidi A 39, 173 (1977).CrossRefGoogle Scholar
27.Barovskii, N.V., Kudakov, U.D., Sokolov, E.B., and Sredin, V.G., Izv. Akad. Nauk SSSR, Neorg. Mater. 19, 15891591 (1983) [translation by Plenum Publishing (1984)].Google Scholar
28.Guo, Q. and Yoshida, A., Jpn. J. Appl. Phys. 33, 2453 (1994).CrossRefGoogle Scholar
29.Slack, G.A., Advanced Materials for Optical Windows (General Electric Technical Information Series No. 79CRD071, under ONR Contract N00014–77-C-0649, Schenectady, NY, June 1979).Google Scholar
30.Meleshkin, V.N., Mikhailin, V.V., Oranovskii, V.E., Orekhanov, P.A., Pasternák, I., Pacesova, S., Salamatov, A.S., Fok, M.V., and Yarov, A.S., in Synchrotron Radiation, edited by Basov, N.G. [Proceedings (Trudy) of the P.N. Lebendev Physics Inst., Moscow, c. 1975], Vol. 80, pp. 169174.Google Scholar
31.Michailin, V.V., Oranovskii, V.E., Pacesová, S., Pastrnák, J., and Salamatov, A.S., Phys. Status Solidi B 55, K51 (1973).CrossRefGoogle Scholar
32.Gautier, M., Duraud, J.P., and LeGressus, C., J. Appl. Phys. 61, 574 (1987).CrossRefGoogle Scholar
33.Olson, C.G., Sexton, J.H., Lynch, D.W., Bevolo, A.J., Shanks, H.R., Harmon, B.N., Ching, W.Y., and Wieliczka, D.M., Solid State Commun. 56, 35 (1985).CrossRefGoogle Scholar
34.Dorneich, A.D., French, R.H., Müllejans, H., Loughin, S., and Rühle, M., J. Microsc. 191(3), 286296 (1988);CrossRefGoogle Scholar
French, R.H., Müllejans, H., Jones, D.J., J. Am. Ceram. Soc. 81, 2549 (1998).CrossRefGoogle Scholar
35.Loughin, S. and French, R.H., in Properties of Group III Nitrides, edited by Edgar, J.H. (Electronic Materials Information Service, INSPEC, Institution of Electrical Engineers, London, 1994), pp. 175189.Google Scholar
36.Loughin, S., French, R.H., in Handbook of Optical Constants of Solids, edited by Palik, E. (Academic Press, New York, 1998), Vol. III, pp. 373401.CrossRefGoogle Scholar
37.Loughin, S., French, R.H., Ching, W.Y., Xu, Y.N., and Slack, G.A., Appl. Phys. Lett. 63, 1182 (1993).CrossRefGoogle Scholar
38.Shin-Etsu Chemical Co., Limited, Advanced Materials Division, 6–1, 2 Chome Otemachi Chiyoda-ku, Tokyo.Google Scholar
39.Johs, B., French, R.H., Kalk, F.D., McGahan, W.A., and Woollam, J.A., Proc. SPIE-Int. Soc. Opt. Eng. 2253, 1098 (1994).Google Scholar
40.Bortz, M.L. and French, R.H., Appl. Phys. Lett. 55, 1955 (1989).CrossRefGoogle Scholar
41.French, R.H., Phys. Scr. 41(4), 404 (1990).CrossRefGoogle Scholar
42.Smith, D.Y., in Handbook of Optical Constants of Solids, edited by Palik, E.D. (Academic Press, New York, 1985), pp. 3568.CrossRefGoogle Scholar
43.Loughin, S., French, R.H., DeNoyer, L.K., Ching, W-Y., and Xu, Y-N., J. Phys. D 29, 1740 (1996).CrossRefGoogle Scholar
44.de L. Kronig, R., J. Opt. Soc. Am. 12, 547 (1926);CrossRefGoogle Scholar
Gorter, C.J. and Kronig, R. de L., Phys. III 9, 1009 (1936).Google Scholar
45.Kramers, H.A., Atti. Congr. Int. Fis. Como. 2, 545 (1927).Google Scholar
46.Bortz, M.L. and French, R.H., Appl. Spectrosc. 43, 1498 (1989).CrossRefGoogle Scholar
47.Sellmeier, W. II. Ann. Phys. Chem. 147, 525 (1872) (in German).CrossRefGoogle Scholar
48.Jacoby, S., Kowalik, J., and Pizzo, J., Iterative Methods for NonLinear Optimization Problems (Prentice-Hall, Englewood Cliffs, NJ, 1972).Google Scholar
49.Wooten, F., Optical Properties of Solids (Academic Press, San Diego, CA, 1972).Google Scholar
50. Duplex II Refractometer, Gem Instruments Corp., P.O. Box 2147, 1630 Stewart St., Santa Monica, CA 90406.Google Scholar
51.Tomiki, T., Ganaha, Y., Shikenbaru, T., Futemma, T., Yuri, M., Aiura, Y., Sato, S., Fukutani, H., Kato, H., Miyahara, T., Yonesu, A., and Tamashiro, J., J. Phys. Soc. Jpn. 62, 573 (1993).CrossRefGoogle Scholar
52.Tomiki, T., Ganaha, Y., Shikenbaru, T., Futemma, T., Yuri, M., Aiura, Y., Sato, S., Fukutani, H., Kato, H., Miyahara, T., Yonesu, A., and Tamashiro, J., J. Phys. Soc. Jpn. 62, 1372 (1993).CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 99 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 28th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-87htd Total loading time: 0.343 Render date: 2021-01-28T03:31:22.188Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Optical properties of AlN determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry data
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Optical properties of AlN determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry data
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Optical properties of AlN determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry data
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *