Skip to main content Accessibility help
×
Home

Nanoscale mapping of in situ actuating microelectromechanical systems with AFM

Published online by Cambridge University Press:  26 January 2015

Manuel Rivas
Affiliation:
Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
Varun Vyas
Affiliation:
Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
Aliya Carter
Affiliation:
Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
James Veronick
Affiliation:
Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
Yusuf Khan
Affiliation:
Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
Oleg V. Kolosov
Affiliation:
Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
Ronald G. Polcawich
Affiliation:
US Army Research Laboratory, Micro and Nano Electronic Materials and Devices Branch, Adelphi, Maryland 20783, USA
Bryan D. Huey
Affiliation:
Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
Corresponding
E-mail address:
Get access

Abstract

Microelectromechanical systems (MEMS) are increasingly at our fingertips. To understand and thereby improve their performance, especially given their ever-decreasing sizes, it is crucial to measure their functionality in situ. Atomic force microscopy (AFM) is well suited for such studies, allowing nanoscale lateral and vertical resolution of static displacements, as well as mapping of the dynamic response of these physically actuating microsystems. In this work, the vibration of a tuning fork based viscosity sensor is mapped and compared to model experiments in air, liquid, and a curing collagen gel. The switching response of a MEMS switch with nanosecond time-scale activation is also monitored – including mapping resonances of the driving microcantilever and the displacement of an overhanging contact structure in response to periodic pulsing. Such nanoscale in situ AFM investigations of MEMS can be crucial for enhancing modeling, design, and the ultimate performance of these increasingly important and sophisticated devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

Boussaad, S. and Tao, N.J.: Polymer wire chemical sensor using a microfabricated tuning fork. Nano Lett. 3(8), 11731176 (2003).CrossRefGoogle Scholar
Zhang, J. and O'Shea, S.: Tuning forks as micromechanical mass sensitive sensors for bio- or liquid detection. Sens. Actuators, B 94(1), 6572 (2003).CrossRefGoogle Scholar
Zeisel, D., Menzi, H., and Ullrich, L.: A precise and robust quartz sensor based on tuning fork technology for (SF6)-gas density control. Sens. Actuators, A 80(3), 233236 (2000).CrossRefGoogle Scholar
Zhou, X.F., Jiang, T., Zhang, J., Wang, X.H., and Zhu, Z.Q.: Humidity sensor based on quartz tuning fork coated with sol-gel-derived nanocrystalline zinc oxide thin film. Sens. Actuators, B 123(1), 299305 (2007).CrossRefGoogle Scholar
Todorovic, M. and Schultz, S.: Miniature high-sensitivity quartz tuning fork alternating gradient magnetometry. Appl. Phys. Lett. 73(24), 35953597 (1998).CrossRefGoogle Scholar
Kosterev, A.A., Tittel, F.K., Serebryakov, D.V., Malinovsky, A.L., and Morozov, I.V.: Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum. 76(4), 043105 (2005).CrossRefGoogle Scholar
Azevedo, R.G., Jones, D.G., Jog, A.V., Jamshidi, B., Myers, D.R., Chen, L., Fu, X.A., Mehregany, M., Wijesundara, M.B.J., and Pisano, A.P.: A SiC MEMS resonant strain sensor for harsh environment applications. IEEE Sens. J. 7(3–4), 568576 (2007).CrossRefGoogle Scholar
Matsiev, L., Bennett, J., and Kolosov, O.: High precision tuning fork sensor for liquid property measurements. In 2005 IEEE Ultrasonics Symposium, New York, van der Steen, T. and Hossack, J. eds.; Vol. 3, 2005; pp. 14921495.CrossRefGoogle Scholar
Buhrdorf, A., Dobrinski, H., Ludtke, O., Bennett, J., Matsiev, L., Uhrich, M., and Kolosov, O.: Multiparameteric Oil Condition Sensor Based on the Tuning Fork Technology for Automotive Applications (Springer-Verlag, Berlin, 2005).CrossRefGoogle Scholar
Sassen, S., Voss, R., Schalk, J., Stenzel, E., Gleissner, T., Gruenberger, R., Neubauer, F., Ficker, W., Kupke, W., Bauer, K., and Rose, M.: Tuning fork silicon angular rate sensor with enhanced performance for automotive applications. Sens. Actuators, A 83(1–3), 8084 (2000).CrossRefGoogle Scholar
Giessibl, F.J.: High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 73(26), 39563958 (1998).CrossRefGoogle Scholar
Dunn, R.C.: Near-field scanning optical microscopy. Chem. Rev. 99(10), 2891 (1999).CrossRefGoogle ScholarPubMed
Gao, F.L., Li, X.D., Wang, J., and Fu, Y.: Dynamic behavior of tuning fork shear-force structures in a SNOM system. Ultramicroscopy 142, 1023 (2014).CrossRefGoogle Scholar
Lee, Y., Ding, Z.F., and Bard, A.J.: Combined scanning electrochemical/optical microscopy with shear force and current feedback. Anal. Chem. 74(15), 36343643 (2002).CrossRefGoogle ScholarPubMed
Custance, O., Perez, R., and Morita, S.: Atomic force microscopy as a tool for atom manipulation. Nat. Nanotechnol. 4(12), 803810 (2009).CrossRefGoogle ScholarPubMed
Picco, L.M., Bozec, L., Ulcinas, A., Engledew, D.J., Antognozzi, M., Horton, M.A., and Miles, M.J.: Breaking the speed limit with atomic force microscopy. Nanotechnology 18(4), 044030 (2007).CrossRefGoogle Scholar
Clubb, D.O., Buu, O.V.L., Bowley, R.M., Nyman, R., and Owers-Bradley, J.R.: Quartz tuning fork viscometers for helium liquids. J. Low Temp. Phys. 136(1–2), 113 (2004).CrossRefGoogle Scholar
Bradley, D.I., Clovecko, M., Fisher, S.N., Garg, D., Guise, E., Haley, R.P., Kolosov, O., Pickett, G.R., Tsepelin, V., Schmoranzer, D., and Skrbek, L.: Crossover from hydrodynamic to acoustic drag on quartz tuning forks in normal and superfluid (4)He. Phys. Rev. B 85(1), 014501 (2012).CrossRefGoogle Scholar
Ahlstrom, S.L., Bradley, D.I., Človečko, M., Fisher, S.N., Guénault, A.M., Guise, E.A., Haley, R.P., Kolosov, O., Kumar, M., McClintock, P.V.E., Pickett, G.R., Polturak, E., Poole, M., Todoshchenko, I., Tsepelin, V., and Woods, A.J.: Response of a mechanical oscillator in solid 4He. J. Low Temp. Phys. 175(1–2), 140146 (2014).CrossRefGoogle Scholar
Soderkvist, J.: Micromachined gyroscopes. Sens. Actuators, A 43(1–3), 6571 (1994).CrossRefGoogle Scholar
Zaman, M.F., Sharma, A., Hao, Z.L., and Ayazi, F.: A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-per-hour Allan deviation bias instability. J. Microelectromech. Syst. 17(6), 15261536 (2008).CrossRefGoogle Scholar
Lemkin, M. and Boser, B.E.: A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics. IEEE J. Solid-State Circuits 34(4), 456468 (1999).CrossRefGoogle Scholar
Dayton, D., Gonglewski, J., Restaino, S., Martin, J., Phillips, J., Hartman, M., Browne, S., Kervin, P., Snodgrass, J., Heimann, N., Shilko, M., Pohle, R., Carrion, B., Smith, C., and Thiel, D.: Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites. Opt. Express 10(25), 15081519 (2002).CrossRefGoogle ScholarPubMed
Doble, N. and Williams, D.R.: The application of MEMS technology for adaptive optics in vision science. IEEE J. Sel. Top. Quantum Electron. 10(3), 629635 (2004).CrossRefGoogle Scholar
Tuantranont, A. and Bright, V.M.: Segmented silicon-micromachined microelectromechanical deformable mirrors for adaptive optics. IEEE J. Sel. Top. Quantum Electron. 8(1), 3345 (2002).CrossRefGoogle Scholar
Van Kessel, P.F., Hornbeck, L.J., Meier, R.E., and Douglass, M.R.: MEMS-based projection display. Proc. IEEE 86(8), 16871704 (1998).CrossRefGoogle Scholar
Brown, E.R.: RF-MEMS switches for reconfigurable integrated circuits. IEEE Trans. Microwave Theory Tech. 46(11), 18681880 (1998).CrossRefGoogle Scholar
Bannon, F.D., Clark, J.R., and Nguyen, C.T.C.: High-Q HF microelectromechanical filters. IEEE J. Solid-State Circuits 35(4), 512526 (2000).CrossRefGoogle Scholar
Proie, R.M., Polcawich, R.G., Pulskamp, J.S., Ivanov, T., and Zaghloul, M.E.: Development of a PZT MEMS switch architecture for low-power digital applications. J. Microelectromech. Syst. 20(4), 10321042 (2011).CrossRefGoogle Scholar
Nguyen, C.T.C.: MEMS technology for timing and frequency control. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(2), 251270 (2007).CrossRefGoogle ScholarPubMed
Knappe, S., Shah, V., Schwindt, P.D.D., Hollberg, L., Kitching, J., Liew, L.A., and Moreland, J.: A microfabricated atomic clock. Appl. Phys. Lett. 85(9), 14601462 (2004).CrossRefGoogle Scholar
Verpoorte, E. and De Rooij, N.F.: Microfluidics meets MEMS. Proc. IEEE 91(6), 930953 (2003).CrossRefGoogle Scholar
Nguyen, N.T., Huang, X.Y., and Chuan, T.K.: MEMS-micropumps: A review. J. Fluids Eng. 124(2), 384392 (2002).CrossRefGoogle Scholar
Lee, G.B., Chen, S.H., Huang, G.R., Sung, W.C., and Lin, Y.H.: Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection. Sens. Actuators, B 75(1–2), 142148 (2001).CrossRefGoogle Scholar
Grayson, A.C.R., Shawgo, R.S., Johnson, A.M., Flynn, N.T., Li, Y.W., Cima, M.J., and Langer, R.: A BioMEMS review: MEMS technology for physiologically integrated devices. Proc. IEEE 92(1), 621 (2004).CrossRefGoogle Scholar
Voldman, J., Gray, M.L., and Schmidt, M.A.: Microfabrication in biology and medicine. Annu. Rev. Biomed. Eng. 1, 401425 (1999).CrossRefGoogle ScholarPubMed
Ziaie, B., Baldi, A., Lei, M., Gu, Y.D., and Siegel, R.A.: Hard and soft micromachining for BioMEMS: Review of techniques and examples of applications in microfluidics and drug delivery. Adv. Drug Delivery Rev. 56(2), 145172 (2004).CrossRefGoogle ScholarPubMed
Kotzar, G., Freas, M., Abel, P., Fleischman, A., Roy, S., Zorman, C., Moran, J.M., and Melzak, J.: Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials 23(13), 27372750 (2002).CrossRefGoogle ScholarPubMed
Pulskamp, J.S., Polcawich, R.G., Rudy, R.Q., Bedair, S.S., Proie, R.M., Ivanov, T., and Smith, G.L.: Piezoelectric PZT MEMS technologies for small-scale robotics and RF applications. MRS Bull. 37(11), 10621070 (2012).CrossRefGoogle Scholar
Osterberg, P.M. and Senturia, S.D.: M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures. J. Microelectromech. Syst. 6(2), 107118 (1997).CrossRefGoogle Scholar
Beeby, S.P., Tudor, M.J., and White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), R175R195 (2006).CrossRefGoogle Scholar
Mitcheson, P.D., Miao, P., Stark, B.H., Yeatman, E.M., Holmes, A.S., and Green, T.C.: MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators, A 115(2–3), 523529 (2004).CrossRefGoogle Scholar
Spearing, S.M.: Materials issues in microelectromechanical systems (MEMS). Acta Mater. 48(1), 179196 (2000).CrossRefGoogle Scholar
Muralt, P., Polcawich, R.G., and Trolier-McKinstry, S.: Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull. 34(9), 658664 (2009).CrossRefGoogle Scholar
Pulskamp, J.S., Bedair, S.S., Polcawich, R.G., Smith, G.L., Martin, J., Power, B., and Bhave, S.A.: Electrode-shaping for the excitation and detection of permitted arbitrary modes in arbitrary geometries in piezoelectric resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(5), 10431060 (2012).CrossRefGoogle ScholarPubMed
Maboudian, R., Ashurst, W.R., and Carraro, C.: Self-assembled monolayers as anti-stiction coatings for MEMS: Characteristics and recent developments. Sens. Actuators, A 82(1–3), 219223 (2000).CrossRefGoogle Scholar
Delrio, F.W., De Boer, M.P., Knapp, J.A., Reedy, E.D., Clews, P.J., and Dunn, M.L.: The role of van der Waals forces in adhesion of micromachined surfaces. Nat. Mater. 4(8), 629634 (2005).CrossRefGoogle Scholar
Kimberley, J., Lambros, J., Chasiotis, I., Pulskamp, J., Polcawich, R., and Dubey, M.: A hybrid experimental/numerical investigation of the response of multilayered MEMS devices to dynamic loading. Exp. Mech. 50(4), 527544 (2010).CrossRefGoogle Scholar
Rembe, C., Kant, R., and Muller, R.S.: Optical measurement methods to study dynamic behavior in MEMS. In Proc. SPIE 4400, Microsystems Engineering: Metrology and Inspection, SPIE-Int Soc Optical Engineering, Bellingham, 2001; pp. 127137.Google Scholar
Espinosa, H.D., Prorok, B.C., and Fischer, M.: A methodology for determining mechanical properties of freestanding thin films and MEMS materials. J. Mech. Phys. Solids 51(1), 4767 (2003).CrossRefGoogle Scholar
Sharpe, W.N., Pulskamp, J., Gianola, D.S., Eberl, C., Polcawich, R.G., and Thompson, R.J.: Strain measurements of silicon dioxide microspecimens by digital imaging processing. Exp. Mech. 47(5), 649658 (2007).CrossRefGoogle Scholar
Gouldstone, A., Chollacoop, N., Dao, M., Li, J., Minor, A.M., and Shen, Y.L.: Indentation across size scales and disciplines: Recent developments in experimentation and modeling. Acta Mater. 55(12), 40154039 (2007).CrossRefGoogle Scholar
Lee, S.W., Meza, L., and Greer, J.R.: Cryogenic nanoindentation size effect in 001 -oriented face-centered cubic and body-centered cubic single crystals. Appl. Phys. Lett. 103(10), 101906 (2013).CrossRefGoogle Scholar
Nili, H., Kalantar-zadeh, K., Bhaskaran, M., and Sriram, S.: In situ nanoindentation: Probing nanoscale multifunctionality. Prog. Mater. Sci. 58(1), 129 (2013).CrossRefGoogle Scholar
Xu, Z-H., Sutton, M.A., and Li, X.: Mapping nanoscale wear field by combined atomic force microscopy and digital image correlation techniques. Acta Mater. 56(20), 63046309 (2008).CrossRefGoogle Scholar
Liu, H.W. and Bhushan, B.: Nanotribological characterization of molecularly thick lubricant films for applications to MEMS/NEMS by AFM. Ultramicroscopy 97(1–4), 321340 (2003).CrossRefGoogle ScholarPubMed
Bhushan, B., Kwak, K.J., and Palacio, M.: Nanotribology and nanomechanics of AFM probe-based data recording technology. J. Phys.: Condens. Matter 20(36), 365207 (2008).Google Scholar
Abir, R., Roizman, P., Fisch, B., Nitke, S., Okon, E., Orvieto, R., and Ben Rafael, Z.: Pilot study of isolated early human follicles cultured in collagen gels for 24 hours. Hum. Reprod. 14(5), 12991301 (1999).CrossRefGoogle ScholarPubMed
Proie, R.M., Ivanov, T., Pulskamp, J.S., and Polcawich, R.G.: A compact, low loss piezoelectric RF MEMS relay with sub 100-ns switching times. In 2012 IEEE MTT-S International Microwave Symposium Digest (MTT), Montreal, Canada, 2012.Google Scholar
Sanchez, L., Potrepka, D., Fox, G., Takeuchi, I., and Polcawich, R.G.: Optimization of PbTiO3 seed layers and Pt metallization for PZT based PiezoMEMS actuators. J. Mater. Res. 28, 19201931 (2013).CrossRefGoogle Scholar
Bosse, J.L. and Huey, B.D.: Error-corrected AFM: A simple and broadly applicable approach for substantially improving AFM image accuracy. Nanotechnology 25(15), 155704 (2014).CrossRefGoogle ScholarPubMed
Xu, J., You, B., and Zhao, X.F.: Development of quartz tuning fork temperature sensors. Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, 2008. SPAWDA 2008, New York, 2008.Google Scholar
Humphris, A.D.L., Miles, M.J., and Hobbs, J.K.: A mechanical microscope: High-speed atomic force microscopy. Appl. Phys. Lett. 86(3), 034106 (2005).CrossRefGoogle Scholar
Bosse, J.L., Grishin, I., Kolosov, O.V., and Huey, B.D.: Multidimensional SPM applied for nanoscale conductance mapping. J. Mater. Res. 28(24), 33113321 (2013).CrossRefGoogle Scholar
Kutes, Y.: Nanoscale photovoltaic mapping. Ph.D. Thesis, University of Connecticut, 2014.
Huey, B.D.: AFM and acoustics: Fast, quantitative nanomechanical mapping. Annu. Rev. Mater. Res. 37, 351385 (2007).CrossRefGoogle Scholar
Bosse, J., Lee, S., Huey, B., Andersen, A., and Sutherland, D.: High speed friction microscopy and nanoscale friction coefficient mapping. Meas. Sci. Technol. 25(11), 115401 (2014).CrossRefGoogle Scholar
Pulskamp, J.S., Proie, R.M., and Polcawich, R.G.: Nano- and micro-electromechanical switch dynamics. J. Micromech. Microeng. 24, 11 (2014).Google Scholar

Rivas supplementary material

Supplementary figures

File 1 MB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 10
Total number of PDF views: 67 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 23rd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-frjnl Total loading time: 0.402 Render date: 2021-01-23T01:59:04.962Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nanoscale mapping of in situ actuating microelectromechanical systems with AFM
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nanoscale mapping of in situ actuating microelectromechanical systems with AFM
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nanoscale mapping of in situ actuating microelectromechanical systems with AFM
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *