Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-10-07T05:26:04.563Z Has data issue: false hasContentIssue false

Mixing entropy and the nucleation of silicides: Ni–Pd–Si and Co–Mn–Si ternary systems

Published online by Cambridge University Press:  31 January 2011

C. Detavernier*
Affiliation:
Department of Solid-state Physics, Ghent University, Krijgslaan 281/S1, B-9000 Gent, Belgium
X. P. Qu
Affiliation:
Department of Electronic Engineering, Fudan University, Shanghai 200433, People's Republic of China
R. L. Van Meirhaeghe
Affiliation:
Department of Solid-state Physics, Ghent University, Krijgslaan 281/S1, B-9000 Gent, Belgium
B. Z. Li
Affiliation:
Department of Electronic Engineering, Fudan University, Shanghai 200433, People's Republic of China
K. Maex
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
*
a)Address all correspondence to this author. Present address: I.B.M. T.J. Watson Research Center, Yorktown Heights, NY. 10598 e-mail: christophe.detavernier@rug.ac.be
Get access

Abstract

Nucleation can play an important role during the formation of silicides, especially when the difference in Gibbs free energy ΔG between the existing and newly formed phase is small. In this work, it is shown that the addition of elements that form a solid solution with either the existing or nucleating phase influences the entropy of mixing and thus changes ΔG. In this way, the height of the nucleation barrier may be controlled, thus controlling the nucleation temperature. The influence of mixing entropy on silicide nucleation is illustrated by experiments for two ternary systems: Co–Mn–Si and Ni–Pd–Si. It is shown that the nucleation temperature of CoSi2 is increased by the addition of Mn, the nucleation temperature of MnSi1.7 is increased by the presence of Co, the nucleation temperature of NiSi2 is increased by the addition of Pd, and the nucleation temperature of PdSi is decreased by the addition of Ni. In all four cases, the effect of the alloying element on the nucleation temperature can be explained by a model on the basis of the concept of mixing entropy.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.d'Heurle, F.M., J. Mater. Res. 3, 167 (1988).CrossRefGoogle Scholar
2.Mangelinck, D., Gas, P., Gay, J.M., Pichaud, B., Thomas, O., J. Appl. Phys. 84, 2583 (1998).Google Scholar
3.Boyanov, B.I., Goeller, P.T., Sayers, D.E., and Nemanich, R.J., J. Appl. Phys. 84, 4285 (1998).Google Scholar
4.Aldrich, D.B., d'Heurle, F.M., Sayers, D.E., and Nemanich, R.J., Phys. Rev. B 53, 16279 (1996).Google Scholar
5.d'Heurle, F.M., Anfiteatro, D.D., Deline, V.R., and Finstad, T.G., Thin Solid Films 128, 107 (1985).Google Scholar
6.Detavernier, C., Van Meirhaeghe, R.L., Cardon, F., and Maex, K., Phys. Rev. B 62, 12045 (2000).Google Scholar
7.Detavernier, C., Van Meirhaeghe, R.L., Maex, K., Vandervorst, W., Brijs, B., and Cardon, F., Appl. Phys. Lett. 77, 3170 (2000).CrossRefGoogle Scholar
8.Detavernier, C., Van Meirhaeghe, R.L., Cardon, F., Maex, K., Bender, H., Brijs, B., and Vandervorst, W., J. Appl. Phys. 89, 2146 (2001).CrossRefGoogle Scholar
9.Lavoie, C., Cabral, C., d'Heurle, F.M., Jordan-Sweet, J.L., and Harper, J.M.E., J. Electron. Mater. 31, 597 (2002).Google Scholar
10.Villars, P., Prince, A., and Okamoto, H., Handbook of Ternary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1997), Vol. 7, p. 8522.Google Scholar
11.Villars, P., Prince, A., and Okamoto, H., Handbook of Ternary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1997), Vol. 10, p. 12973.Google Scholar
12.Barge, T., Gas, P., and d'Heurle, F.M., J. Mat Res. 10, 1134 (1995).Google Scholar
13.d'Heurle, F.M. and Petersson, C.S., Thin Solid Films 128, 283 (1985).Google Scholar
14.Appelbaum, A., Knoell, R.V., and Murarka, S.P., J. Appl. Phys. 57, 1880 (1985).Google Scholar
15.Eizenberg, M. and Tu, K.N., J. Appl. Phys. 53, 6885 (1982).Google Scholar
16.Zhang, L. and Ivey, D., J. Mater. Res. 6, 1518 (1991).Google Scholar
17.Teichert, S., Sarkar, D.K., Schwendler, S., Giesler, H., Mogilatenko, A., Falke, M., Beddies, G., and Hinneberg, H.J., Microelectron. Eng. 55, 227 (2001).Google Scholar
18.Rebien, M., Henrion, W., Angermann, H., and Teichert, S., Appl. Phys. Lett. 81, 649 (2002).Google Scholar
19.Zhimin-Wang, , Qingrun-Hou, , and Yuangjun-He, , Mod. Phys. Lett. B 16, 583 (2002).Google Scholar
20.Mogalitenko, A., Falke, M., Teichert, S., Hortenbach, H., Beddies, G., and Hinneberg, H.J., Microelectron. Eng. 64, 211 (2002).CrossRefGoogle Scholar
21.Gambino, J.P. and Colgan, E.G., Mater. Chem. Phys. 52, 99 (1998).CrossRefGoogle Scholar
22.Lavoie, C., Purtell, R., Cöia, C., Detavernier, C., Desjardins, P., Jordan-Sweet, J., Cabral, C. Jr., d'Heurle, F.M., and Harper, J.M.E., Electrochem. Soc. Symp. Proc. 2002-11, 455 (2002).Google Scholar
23.Hutchins, G. and Schepala, A., Thin Solid Films 18, 343 (1973).Google Scholar
24.Chikyow, T., Ohdomari, I., and Suzuki, S., Phys. Rev. B 34, 4807 (1986).Google Scholar
25.Powder Diffraction File No. 38–0844. (International Center for Diffraction Data, Newton Square, PA, 1984).Google Scholar
26.Powder Diffraction File No. 83–0151. (International Center for Diffraction Data, Newton Square, PA, 1995).Google Scholar
27.Finstad, T.G. and Nicolet, M.A., J. Appl. Phys. 50, 303 (1979).CrossRefGoogle Scholar
28.Lexa, D., Kematick, R.J., and Myers, C.E., Chem. Mater. 8, 2636 (1996).Google Scholar
29.Maex, K. and Rossum, M. Van, Properties of Metal Silicides (INSPEC, London, U.K., 1995).Google Scholar
30.Mangelinck, D., Dai, J.Y., Pan, J., and Lahiri, S.K., Appl. Phys. Lett. 75, 1736 (1999).Google Scholar