Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T08:39:30.359Z Has data issue: false hasContentIssue false

Mid-infrared emissions from Er3+ in Ga2S3–GeS2–Sb2S3 glasses

Published online by Cambridge University Press:  31 January 2011

Manabu Ichikawa
Affiliation:
Division of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
Yoichi Ishikawa
Affiliation:
Division of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
Takashi Wakasugi
Affiliation:
Division of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
Kohei Kadono*
Affiliation:
Division of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
*
a)Address all correspondence to this author. e-mail: kadono@kit.ac.jp
Get access

Abstract

Emission properties of Er3+ in Ga2S3–GeS2–Sb2S3 glasses at the mid-infrared region were investigated from the viewpoint of their dependence on the concentration of the active ion and the glass composition. In the Judd–Ofelt analysis, no variation in omega parameters were observed when GeS2 was replaced by Ga2S3, while Ω2 increased as Sb2S3 was replaced by Ga2S3. This is due to the structural similarity and difference between the glass network units, GaS4 and GeS4 tetrahedra, and SbS3 pyramid. Clear mid-infrared emissions were observed at 2750 and 4300 nm assigned to the 4I11/24I13/2 and 4I9/24I11/2 transitions, respectively. The lifetime of the initial level of the 4.3 μm emission, 4I9/2, rapidly decreased with the Er3+ concentration because of the cross relaxation of this level, which can take place even at considerably low Er3+ concentration. The cross-relaxation processes were suppressed by the increase in the content of Ga2S3 because the solubility of Er3+ ions in the glasses increases with the Ga2S3 content.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shaw, L.B., Cole, B., Thielen, P.A., Sanghera, J.S., Aggarwal, I.D.: Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber. IEEE J. Quantum Electron. 48, 1127 (2001)CrossRefGoogle Scholar
2.Basiev, T.T., Orlovskii, Yu.V., Galagan, B.I., Doroshenko, M.E., Vorob'ev, I.N., Dmitruk, L.N., Papashvili, A.G., Skvortsov, V.N., Konyushkin, V.A., Pukhov, K.K., Ermakov, G.A., Osiko, V.V., Prokhorov, A.M., Smith, S.: Evaluation of rare-earth doped crystals and glasses for 4–5 μm lasing. Laser Phys. 12, 859 (2002)Google Scholar
3.Reisfeld, R., Bornstein, A., Flahaut, J., Guittard, M., Loireau-Lozac'h, A.M.: Absorption and fluorescence of Ho3+ in La2S3·3Ga2S3. Chem. Phys. Lett. 47, 408 (1977)CrossRefGoogle Scholar
4.Schweizer, T., Hewak, D.W., Samson, B.N., Pyne, D.N.: Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibers for mid-infrared laser applications. Opt. Lett. 21, 1594 (1996)CrossRefGoogle Scholar
5.Heo, J., Shin, Y.B.: Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge–As (or Ga)–S glasses. J. Non-Cryst. Solids 196, 162 (1996)CrossRefGoogle Scholar
6.Shaw, L.B., Harbison, B.B., Cole, B., Sanghera, J.S., Aggarwal, I.D.: Spectroscopy of the IR transitions in Pr3+ doped heavy metal selenide glasses. Opt. Express 1, 87 (1997)CrossRefGoogle ScholarPubMed
7.Schweizer, T., Brady, D.J., Hewak, D.W.: Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibers for mid-infrared laser applications. Opt. Express 1, 102 (1997)CrossRefGoogle Scholar
8.Schweizer, T., Hewak, D.W., Samson, B.N., Payne, D.N.: Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass. J. Lumin. 72, 419 (1997)CrossRefGoogle Scholar
9.Heo, J., Cho, W.Y., Chung, W.J.: Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass. J. Non-Cryst. Solids 212, 151 (1997)CrossRefGoogle Scholar
10.Cole, B., Shaw, L.B., Pureza, P.C., Mossadegh, R., Sanghers, J.S., Aggarwal, I.D.: Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR. J. Non-Cryst. Solids 256 & 257, 253 (1999)CrossRefGoogle Scholar
11.Shin, Y.B., Heo, J.: Mid-infrared emissions and energy transfer in Ge–Ga–S glasses doped with Dy3+. J. Non-Cryst. Solids 256 & 257, 260 (1999)CrossRefGoogle Scholar
12.Schweizer, T., Samson, B.N., Hector, J.R., Brockleby, W.S., Hewak, D.W., Payne, D.N.: Infrared emission and ion–ion interactions in thulium- and terbium-doped gallium lanthanum sulfide glass. J. Opt. Soc. Am. B 16, 308 (1999)CrossRefGoogle Scholar
13.Choi, Y.G., Kim, K.H., Lee, B.J., Shin, Y.B., Kim, Y.S., Heo, J.: Emission properties of the Er3+:4I11/24I13/2 transition in Er3+- and Er3+/Tm3+-doped Ge–Ga–As–S glasses. J. Non-Cryst. Solids 278, 137 (2000)CrossRefGoogle Scholar
14.Kadono, K.: Nonoxide glass-forming systems—Glass formation and structure, and optical properties of rare-earth ions in glasses. J. Ceram. Soc. Jpn. 115, 297 (2007)CrossRefGoogle Scholar
15.Park, B.J., Seo, H.S., Ahn, J.T., Choi, Y.G., Heo, J., Chung, W.J.: Dy3+ doped Ge-Ga-Sb-Se glasses and optical fiber for the mid-IR gain media. J. Ceram. Soc. Jpn. 116, 1087 (2008)CrossRefGoogle Scholar
16.Moizan, V., Nazabal, V., Troles, J., Houizot, P., Adam, J.L., Doualan, J.L., Moncorge, R., Smektala, F., Gadret, G., Pitois, S., Canat, G.: Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy. Opt. Mater. 31, 39 (2008)CrossRefGoogle Scholar
17.Prudenzano, F., Mescia, L., Allegretti, L., De Sario, M., Smektala, F., Moizan, V., Nazabal, V., Troles, J., Doualan, J.L., Canat, G., Adam, J.L., Boulard, B.: Simulation of mid-IR amplification in Er3+-doped chalcogenide microstructured optical fiber. Opt. Mater. 31, 1292 (2009)CrossRefGoogle Scholar
18.Higuchi, H., Takahashi, M., Kawamoto, Y., Kadono, K., Ohtsuki, T., Peyghambarian, N., Kitamura, N.: Optical transitions and frequency upconversion emission of Er3+ ions in Ga2S3–GeS2–La2S3 glasses. J. Appl. Phys. 83, 19 (1998)CrossRefGoogle Scholar
19.Pollack, S.A., Robinson, M.: Laser emission of Er3+ in ZrF4-based fluoride glass. Electron. Lett. 24, 320 (1981)CrossRefGoogle Scholar
20.Stoneman, R.C., Esterowitz, L.: Efficient resonantly pumped 2.8-μm Er3+:GSGG laser. Opt. Lett. 17, 816 (1992)CrossRefGoogle Scholar
21.Miniscalco, W.J.: Optical and electronic properties of rare earth ions in glasses, Rare Earth Doped Fiber Lasers and Amplifiers edited by M.J.F. Digonnet (Marcel Dekker, Inc, New York 1993)72105Google Scholar
22.Pollnau, M., Graf, Th., Balmer, J.E., Lüthy, W., Weber, H.P.: Explanation of the cw operation of the Er3+ 3-μm crystal laser. Phys. Rev. A 49, 3990 (1994)CrossRefGoogle Scholar
23.Sandrock, T., Diening, A., Huber, G.: Laser emission of erbium-doped fluoride bulk glasses in the spectral range from 2.7 to 2.8 μm. Opt. Lett. 24, 382 (1999)CrossRefGoogle ScholarPubMed
24.Sousa, D.F., Zonetti, L.F.C., Bell, M.J.V., Lebullenger, R., Hernandes, A.C., Nunes, L.A.O.: Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications. J. Appl. Phys. 85, 2502 (1999)CrossRefGoogle Scholar
25.Kadono, K., Yazawa, T., Shibin, J., Porque, J., Hwang, B-C., Peyghambarian, N.: Rate equation analysis and energy transfer of Er3+-doped Ga2S3–GeS2–La2S3 glasses. J. Non-Cryst. Solids 331, 79 (2003)CrossRefGoogle Scholar
26.Snoeks, E., van den Hoven, G.N., Polman, A., Hendriksen, B., Diemeer, M.B.J., Priolo, F.: Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides. J. Opt. Soc. Am. B 12, 1468 (1995)CrossRefGoogle Scholar
27.van den Hoven, G.N., Snoeks, E., Polman, A., van Dam, C., Uffelen, J.W.M., Smit, M.K.: Upconversion in Er-implanted Al2O3 waveguides. J. Appl. Phys. 79, 1258 (1996)CrossRefGoogle Scholar
28.Ohtsuki, T., Honkanen, S., Najafi, S.I., Peyghambarian, N.: Cooperative upconversion effects on the performance of Er3+-doped phosphate glass waveguide amplifiers. J. Opt. Soc. Am. B 14, 1838 (1997)CrossRefGoogle Scholar
29.Hwang, B.C., Jiang, S., Luo, T., Watson, J., Sorbello, G., Peyghambarian, N.: Cooperative upconversion and energy transfer of new high Er3+- and Yb3+–Er3+-doped phosphate glasses. J. Opt. Soc. Am. B 17, 833 (2000)CrossRefGoogle Scholar
30.Koudelka, L., Frumar, M., Pisárčik, M.: Raman spectra of Ge–Sb–S system glasses in the S-rich region. J. Non-Cryst. Solids 41, 171 (1980)CrossRefGoogle Scholar
31.Koudelka, L., Pisárčik, M., Baidakova, O.L.: The effect of MnS- and MnCl2-doping on the structure of GeS2–Ga2S3 glasses. J. Mater. Sci. Lett. 8, 1161 (1989)CrossRefGoogle Scholar
32.Heo, J., Yoon, J.M., Ryou, S-Y.: Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2–Ga2S3 glasses. J. Non-Cryst. Solids 238, 115 (1998)CrossRefGoogle Scholar
33.Frumarová, B., Němec, P., Frumar, M., Oswald, J., Vlček, M.: Synthesis and optical properties of the Ge–Sb–S:PrCl3 glass system. J. Non-Cryst. Solids 256 & 257, 266 (1999)CrossRefGoogle Scholar
34.Takebe, H., Hirakawa, T., Ichiki, T., Morinaga, K.: Thermal stability and structure of Ge–Sb–S glasses. J. Ceram. Soc. Jpn. 111, 572 (2003)CrossRefGoogle Scholar
35.Yang, Z., Luo, L., Chen, W.: The 1.23 and 1.47 μm emissions from Tm3+ in chalcogenide glasses. J. Appl. Phys. 99, 076107 (2006)CrossRefGoogle Scholar
36.Judd, B.R.: Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750 (1962)CrossRefGoogle Scholar
37.Ofelt, G.S.: Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511 (1962)CrossRefGoogle Scholar
38.Shinn, M.D., Sibley, W.A., Drexhage, M.G., Brown, R.N.: Optical transitions of Er3+ ions in fluorozirconate glass. Phys. Rev. B 27, 6635 (1983)CrossRefGoogle Scholar
39.Carnall, W.T., Fields, P.R., Rajnak, K.: Electronic energy levels in the trivalent lanthanide aquo ions I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 49, 4424 (1968)CrossRefGoogle Scholar
40.Weber, M.J.: Probabilities for radiative and nonradiative decay of Er3+ in LaF3. Phys. Rev. 157, 262 (1967)CrossRefGoogle Scholar
41.Dieke, G.H., Crosswhite, H.M.: The spectra of the doubly and triply ionized rare earths. Appl. Opt. 2, 675 (1963)CrossRefGoogle Scholar
42.Weber, M.J.: Probabilities for radiative and nonradiative decay of Er3+ in LaF3. Phys. Rev. 157, 262 (1961)CrossRefGoogle Scholar
43.Nageno, Y., Takebe, H., Morinaga, K.: Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borated, and phosphate glasses. J. Am. Ceram. Soc. 76, 3081 (1993)CrossRefGoogle Scholar
44.Tanabe, S.: Optical transitions of rare earth ions for amplifiers: How the local structure works in glass. J. Non-Cryst. Solids 259, 1 (1999)CrossRefGoogle Scholar
45.Higuchi, H., Kanno, R., Kawamoto, Y., Takahashi, M., Kadono, K.: Local structures of Er3+ containing Ga2S3–GeS2–La2S3 glass. Phys. Chem. Glasses 40, 122 (1999)Google Scholar
46.Miniscalco, W.J.: Optical and electronic properties of rare earth ions in glasses, Rare-Earth-Doped Fiber Lasers and Amplifiers edited by M.J.F. Digonnet (Marcel Dekker, Inc, New York 1993)4250Google Scholar
47.Yeh, D.C., Petrin, R.R., Sibley, W.A., Madigou, V., Adam, J.L., Suscavage, M.: Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass. Phys. Rev. B 39, 80 (1989)CrossRefGoogle Scholar
48.Quimby, R.S., Tick, P.A., Borrelli, N.F., Cornelius, L.K.: Quantum efficiency of Pr3+ doped transparent glass ceramics. J. Appl. Phys. 83, 1649 (1998)CrossRefGoogle Scholar
49.Dexter, D.L.: A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836 (1953)CrossRefGoogle Scholar
50.Lee, T.H., Hoe, J.: Energy transfer processes and Ho3+:5I5 level population dynamics in chalcogenide glasses. Phys. Rev. B 73, 144201 (2006)CrossRefGoogle Scholar
51.Arai, K., Namikawa, H., Kumata, K., Honda, T., Ishii, Y., Handa, T.: Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass. J. Appl. Phys. 59, 3430 (1986)CrossRefGoogle Scholar