Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-dxfhg Total loading time: 0.514 Render date: 2021-02-26T05:35:41.946Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Microstructural studies of PrBa2Cu3Oy during melt processing

Published online by Cambridge University Press:  31 January 2011

E. Sudhakar Reddy
Affiliation:
Defence Metallurgical Research Laboratory, P.O. Kanchanbagh, Hyderabad-500 058, India
T. Rajasekharan
Affiliation:
Defence Metallurgical Research Laboratory, P.O. Kanchanbagh, Hyderabad-500 058, India
Get access

Abstract

The microstructures of PrBa2Cu3Oy during melt processing have been studied for samples quenched at different stages of the thermal cycle. The absence of the Pr2BaCuO5 phase in the Pr–Ba–Cu–O phase diagram, analogous to the Y2BaCuO5 (211) phase in the Y–Ba–Cu–O system, makes it interesting to study the microstructure of PrBa2Cu3Oy (Pr-123) during melt processing. The nature and morphology of the properitectic particles, the nucleation of Pr-123, and the microstructures resulting from melt processing are investigated and discussed as compared with those in YBa2Cu3Oy. At the properitectic stage the morphology of PrBaO3 (Pr-110) particles is angular. Pr-123 is found to nucleate on all Pr-110 particles with a needle-like morphology, whereas in other 123 systems no preferred morphology for the 123 during nucleation is observed. The melt textured microstructure of Pr-123 revealed similar features like domain formation with the trapped properitectic phase. The only difference is the absence of platelet gaps within domains as observed in other 123 systems. All these observations suggest that as compared to other 123 systems the microstructure of the Pr–Ba–Cu–O system behaves differently due to the absence of the analogous 211 phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Jin, S., Tiefel, T. H., Sherwood, R. C., van Dover, R. B., Davis, M. E., Kammlott, G. W., and Fastnacht, R. A., Phys. Rev. 28, 1189 (1989).Google Scholar
2.Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
3.Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).CrossRefGoogle Scholar
4.Lian, Z., Pingxian, Z., Ping, J., Keguang, W., Jingrong, W., and Xiaozu, W., Supercond. Sci. Technol. 3, 490 (1990).CrossRefGoogle Scholar
5.Yoo, S. I., Murakami, M., Sakai, N., Higuchi, T., and Tanaka, S., Jpn. J. Appl. Phys. 33, L1000 (1994).CrossRefGoogle Scholar
6.Reddy, E. Sudhakar and Rajasekharan, T., J. Mater. Res. 13, 2472 (1998).CrossRefGoogle Scholar
7.Meng, R. L., Kinalidis, C., Sun, Y. Y., Gao, L., Tao, Y. K., Hor, P. H., and Chu, C. W., Nature 345, 326 (1990).CrossRefGoogle Scholar
8.Bateman, C. A., Zhang, L., Chan, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 75, 1281 (1992).CrossRefGoogle Scholar
9.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 7, 1621 (1992).CrossRefGoogle Scholar
10.John, D. H. St., Acta metall. mater. 38, 631 (1990).Google Scholar
11.Sartell, J. A. and Mack, D. J., J. Inst. Met. 19, 64 (1993).Google Scholar
12.Barker, N. J. W. and Hellawell, A., Metal Sci. 8, 353 (1974).CrossRefGoogle Scholar
13.Fredricksson, H. and Nylen, T., Metal Sci. 16, 283 (1982).CrossRefGoogle Scholar
14.Lowe-Ma, C. K. and Vanderah, T. A., Physica C 201, 233 (1992).CrossRefGoogle Scholar
15.Soderholm, L., Zhang, K., Hinks, D. G., Beno, M. A., Jorgensen, J. D., Segrea, C. U., and Schuller, I. K., Nature 328, 604 (1987).CrossRefGoogle Scholar
16.Tagami, M., Sumida, M., Krauns, Ch., Yamada, Y., Umeda, T., and Shiohara, Y., Physica C 250, 240 (1995).CrossRefGoogle Scholar
17.Reddy, E. Sudhakar, Ph.D. Thesis, University of Hyderabad, Hyderabad (1997).Google Scholar
18.Chen, B. J., Rodriguez, M. A., Misture, S. T., and Synder, R. L., Physica C 198, 118 (1992).CrossRefGoogle Scholar
19.Golden, S. J., Yamashita, T., Bhargava, A., Barry, J. C., and Mackinnon, I. D. R., Physica C 221, 85 (1994).CrossRefGoogle Scholar
20.Schmitz, G. J., Laakmann, J., Wolters, Ch., Rex, S., Gawalek, W., Habisreuther, T., Bruchlos, G., and Gornert, P., J. Mater. Res. 8, 2774 (1993).CrossRefGoogle Scholar
21.Alexander, K. B., Goyal, A., Kroeger, D. M., Selvamanickam, V., and Salama, K., Phys. Rev. B 45, 5622 (1992).CrossRefGoogle Scholar
22.Goyal, A., Alexander, K. B., Kroeger, D. M., Funkenbusch, F. D., and Burns, S. J., Physica C 210, 197 (1993).CrossRefGoogle Scholar
23.Diko, P., Gawalek, W., Habisreuther, T., Klupsch, T., and Gornert, P., Phys. Rev. 52, 13658 (1995).CrossRefGoogle Scholar
24.Diko, P., Pellerin, N., and Odier, P., Physica C 247, 169 (1995).CrossRefGoogle Scholar
25.Diko, P., Ausloos, M., and Cloots, R., J. Mater. Res. 11, 1179 (1995).CrossRefGoogle Scholar
26.Griffith, M. L., Hoffman, R. T., and Halloran, J. W., J. Mater. Res. 1, 1633 (1994).CrossRefGoogle Scholar
27.Reddy, E. Sudhakar and Rajasekharan, T., Mater. Lett. 35, 62 (1998).CrossRefGoogle Scholar
28.Murashov, V. A., Schatzle, P., Krabbes, G., Klosowaski, J., Wendrock, H., Vogel, H. R., and Eversmann, K., Physica C 261, 181 (1995).CrossRefGoogle Scholar
29.Reddy, E. Sudhakar and Rajasekharan, T., Phys. Rev. B 57, 5079 (1998).CrossRefGoogle Scholar
30.Reddy, E. Sudhakar and Rajasekharan, T., Physica C 279, 56 (1997).CrossRefGoogle Scholar
31.Diko, P., Todt, V. R., Miller, D. J., and Goretta, K. C., Superlatt. Microstruct. 21, 403 (1997).CrossRefGoogle Scholar
32.Sandiumenge, F., Piñol, S., Obradors, X., Snoeck, E., and Roucau, C., Phys. Rev. B 50, 7032 (1994).CrossRefGoogle Scholar
33.Sandiumenge, F., Vilalta, N., Obradors, X., Piñol, S., Bassas, J., and Maniette, Y., J. Appl. Phys. 11, 8847 (1996).CrossRefGoogle Scholar
34.Reddy, E. Sudhakar and Rajasekharan, T., Phys. Rev. B 55, 14160 (1997).CrossRefGoogle Scholar
35.Reddy, E. Sudhakar and Rajasekharan, T., J. Mater. Res. 13, 1828 (1998).CrossRefGoogle Scholar
36.Müller, D. and Freyhardt, H. C., Physica C 242, 283 (1996).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 10 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Microstructural studies of PrBa2Cu3Oy during melt processing
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Microstructural studies of PrBa2Cu3Oy during melt processing
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Microstructural studies of PrBa2Cu3Oy during melt processing
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *