Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-jsbx8 Total loading time: 2.333 Render date: 2021-04-17T12:04:00.864Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Microstructural evolution of the η-phase in the Cu–Sn system

Published online by Cambridge University Press:  31 January 2011

E. Sudhakar Reddy
Affiliation:
Defence Metallurgical Research Laboratory, P.O. Kanchanbagh, Hyderabad 500 058, India
T. Rajasekharan
Affiliation:
Defence Metallurgical Research Laboratory, P.O. Kanchanbagh, Hyderabad 500 058, India
Get access

Extract

The formation of η-phase by a peritectic reaction in the Cu–Sn metallic system has been cited in the literature while discussing the solidification of the high temperature superconductor Yba2Cu3O7 through the peritectic temperature, from Y2BaCuO5 and liquid phases. Similar schematic phase diagrams and driving forces have been invoked to discuss the reactions in both cases. In this paper, we have studied the microstructural evolution of the η-phase from є + liquid in the Cu–Sn system, by observing quenched microstructures at various stages of processing, when subjected to a thermal schedule similar to the one used for the melt-processing of YBa2Cu3O7. A comprehensive picture of the mechanism by which the η phase nucleates and grows has evolved.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Murakami, M., Supercond. Sci. Technol. 5, 185 (1992).CrossRefGoogle Scholar
2.Gopalan, R., Roy, T., Rajasekharan, T., Rangarajan, G., and Hari Babu, N., Physica C 24, 106 (1995).CrossRefGoogle Scholar
3.Ekin, J. W., Salama, K., and Selvamanickam, V., Appl. Phys. Lett. 59, 360 (1991).CrossRefGoogle Scholar
4.Tatsuhara, K., Miura, N., Murakami, M., Koshizuka, N., and Tanaka, S., Physica C 185–189, 2479 (1991).CrossRefGoogle Scholar
5.Fujimoto, H., Murakami, M., Gothoh, S., Koshizuka, N., and Tanaka, S., Adv. Supercond. 2, 285 (1990).CrossRefGoogle Scholar
6.Jin, S., Tiefel, T. H., Sherwood, R. C., van Dover, R. B., Davis, M. E., Kammlott, G. W., and Fastnacht, R. A., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
7.Murakami, M., Morita, M., Doi, K., and Miyamoto, M., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
8.Yoo, S. I., Murakami, M., Sakai, N., Higuchi, T., and Tanaka, S., Jpn. J. Appl. Phys. 33, L1000 (1994).CrossRefGoogle Scholar
9.Lian, Z., Pingxian, Z., Ping, J., Keguang, W., Jingrong, W., and Xiaozu, W., Supercond. Sci. Technol. 3, 490 (1990).CrossRefGoogle Scholar
10.Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 64, 2352 (1989).CrossRefGoogle Scholar
11.Pellerin, N., Odier, P., Simon, P., and Chateigner, D., Physica C 222, 133 (1994).CrossRefGoogle Scholar
12.Lee, D. F., Mironova, M., Selvamanickam, V., and Salama, K., Interface Science 1, 381 (1994).CrossRefGoogle Scholar
13.Meng, R. L., Kinalidis, C., Sun, Y. Y., Gao, L., Tao, Y. K., Hor, P. H., and Chu, C. W., Nature (London) 345, (1990).Google Scholar
14.Morita, M., Takebayashi, S., Tanaka, M., Kimura, K., Miyamoto, K., and Sawano, K., Adv. Supercond. 3, 733 (1991).Google Scholar
15.Bateman, C. A., Zhang, L., Chan, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 75, 1281 (1992).CrossRefGoogle Scholar
16.Cima, M. J., Flemings, M. C., Figueredo, A. M., Nakade, M., Ishii, H., Brody, H. D., and Haggerty, J. S., J. Appl. Phys. 72, 179 (1992).CrossRefGoogle Scholar
17.Salama, S. and Lee, D. F., Supercond. Sci. Technol. 7, 177 (1994).CrossRefGoogle Scholar
18.Hillert, M., Solidification and Casting of Metals (Metals Society, London, 1979), p. 81.Google Scholar
19.St. John, D. H., Acta Metall. Mater. 38, 631 (1990).CrossRefGoogle Scholar
20.Spittle, J. A., J. Inst. Metals 98, 124 (1970).Google Scholar
21.Terborg, R. and Schmitz, G. J., J. Mater. Res. 12, 2002 (1997).CrossRefGoogle Scholar
22.Maeda, M., Kadoi, M., and Ikeda, T., Jpn. J. Appl. Phys. 28, 1417 (1989).CrossRefGoogle Scholar
23.Diko, P., Pellerin, N., and Odier, P., Physica C 247, 169 (1995).CrossRefGoogle Scholar
24.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 7, 1621 (1992).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 18 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Microstructural evolution of the η-phase in the Cu–Sn system
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Microstructural evolution of the η-phase in the Cu–Sn system
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Microstructural evolution of the η-phase in the Cu–Sn system
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *