Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-6f8dk Total loading time: 1.076 Render date: 2021-03-08T09:35:57.291Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Metalorganic chemical vapor deposition of very thin Pb(Zr,Ti)O3 thin films at low temperatures for high-density ferroelectric memory applications

Published online by Cambridge University Press:  31 January 2011

Hye Ryoung Kim
Affiliation:
School of Materials Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University, San #56–1 Shillim-dong, Kwanak-ku, Seoul, 151–742, Korea
Seehwa Jeong
Affiliation:
School of Materials Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University, San #56–1 Shillim-dong, Kwanak-ku, Seoul, 151–742, Korea
Chung Bae Jeon
Affiliation:
School of Materials Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University, San #56–1 Shillim-dong, Kwanak-ku, Seoul, 151–742, Korea
Oh Seong Kwon
Affiliation:
School of Materials Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University, San #56–1 Shillim-dong, Kwanak-ku, Seoul, 151–742, Korea
Cheol Seong Hwang
Affiliation:
School of Materials Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University, San #56–1 Shillim-dong, Kwanak-ku, Seoul, 151–742, Korea
Young Ki Han
Affiliation:
Jusung Engineering LTD., #49, Neungpyeong-Ri, Opo-Myeun, Kwangju-Gun, Kyunggi-Do, 464–890, Korea
Doo Young Yang
Affiliation:
Jusung Engineering LTD., #49, Neungpyeong-Ri, Opo-Myeun, Kwangju-Gun, Kyunggi-Do, 464–890, Korea
Ki Young Oh
Affiliation:
Jusung Engineering LTD., #49, Neungpyeong-Ri, Opo-Myeun, Kwangju-Gun, Kyunggi-Do, 464–890, Korea
Get access

Abstract

The metalorganic chemical vapor deposition of very thin (<50 nm) Pb(Zr,Ti)O3 (PZT) thin films was performed for high density (>32 mega bit) ferroelectric memory devices. The growth temperatures were set between 450 and 530 °C to obtain a smooth surface morphology and prevent damage to the underlying reaction barrier layer. The average grain size of a 50-nm-thick film on a Pt electrode was about 34 nm with a size distribution (σ2) of 11 nm. These values are much smaller than the sol-gel-derived PZT films (55 and 25 nm, respectively). Very thin films with a thickness of approximately 30 nm were prepared at wafer temperatures ranging from 500 to 525 °C. Even with the very small thickness, the films showed good ferroelectric properties with a typical remanent polarization from 10 to 15 μC/cm2 and an extremely low coercive voltage of 0.3 V. However, the leakage current density was rather high resulting in nonsaturating polarization versus voltage curves. Even though good ferroelectric properties were obtained, the formation of PtxPby alloys on top of the Pt electrode was consistently observed. This precludes the reliable control of film composition and electrical performance. The adoption of an Ir electrode successfully eliminated intermetallic alloy formation and resulted in better and reproducible process control. A 50-nm-thick PZT film on an Ir/IrO2/SiO2/Si substrate also showed a reasonable ferroelectric performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below.

References

1. For example, Ferroelectric Thin Films I–VII (Mater. Res. Soc. Proc., Warrendale, PA).Google Scholar
2.Dormans, G.J.M., de Keijser, M., and van Veldhoven, P.J., in Ferroelectric Thin Films II, edited by Kingon, A.I., Myers, E.R., and Tuttle, B. (Mater. Res. Soc. Proc. 243, Boston, MA, 1992), pp. 203212.Google Scholar
3.Bai, G.R., Chang, H.L.M., Foster, C.M., Shen, Z., and Lam, D.J., J. Mater. Res. 9, 156 (1994).CrossRefGoogle Scholar
4.Dormans, G.J.M., Larsen, P.K., Spierings, G.A.C.M., Dikken, J., Ulenaers, M.J.E., Cuppens, R., Taylor, D.J., and Verhaar, R.D.J., Integr. Ferroelectr. 6, 93 (1995).CrossRefGoogle Scholar
5.Hwang, C.S., Lee, B.T., Cho, H.J., Horii, H., Kim, J.W., Kang, C.S., Lee, S.I., and Lee, M.Y., J. Appl. Phys. 83, 3703 (1998).CrossRefGoogle Scholar
6.Scott, J.F., Integr. Ferroelectr. 9, 1 (1995).CrossRefGoogle Scholar
7.Shin, J.C., Hwang, C.S., and Kim, H.J., Appl. Phys. Lett. 76, 1609 (2000).CrossRefGoogle Scholar
8.Dey, S., Lee, J-J., and Alluri, P., Jpn. J. Appl. Phys., Part I 34, 3142 (1995).CrossRefGoogle Scholar
9.Chen, I. and Roeder, J.F., in Ferroelectric Thin Films VII, edited by Jones, R.E., Schwartz, R.W., Summerfelt, S.R., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 541, Warrendale, PA, 1999), 375.Google Scholar
10.Brooks, K.G., Reaney, I.M., Klissurska, R., Huang, Y., Bursill, L., and Setter, N., J. Mater. Res. 9, 2540 (1994).CrossRefGoogle Scholar
11.Kang, S.Y., Choi, K.H., Lee, S.K., Hwang, C.S., and Kim, H.J., J. Electrochem. Soc. 147, 1161 (2000).CrossRefGoogle Scholar
12.Nagashima, K. and Funakubo, H., Jpn. J. Appl. Phys. 39, 212216 (2000).CrossRefGoogle Scholar
13.Barin, I., Thermochemical Data of Pure Substances (VCH, Weinheim, Germany, 1989).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 23 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 8th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Metalorganic chemical vapor deposition of very thin Pb(Zr,Ti)O3 thin films at low temperatures for high-density ferroelectric memory applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Metalorganic chemical vapor deposition of very thin Pb(Zr,Ti)O3 thin films at low temperatures for high-density ferroelectric memory applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Metalorganic chemical vapor deposition of very thin Pb(Zr,Ti)O3 thin films at low temperatures for high-density ferroelectric memory applications
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *