Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-dxfhg Total loading time: 0.4 Render date: 2021-03-02T15:16:40.799Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Mechanical solid state reaction for synthesis of β–SiC powders

Published online by Cambridge University Press:  03 March 2011

M. Sherif El-Eskandarany
Affiliation:
Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Nasr City, Cairo, Egypt
Kenji Sumiyama
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai 980, Japan
Kenji Suzuki
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai 980, Japan
Get access

Abstract

Stoichiometric β-SiC powders have been successfully prepared by solid state reaction of elemental silicon and carbon powders via the mechanical alloying process. The mechanical alloying process was performed in a high-energy ball mill under argon gas flow at room temperature. The solid-state reacted alloy powders have been characterized as a function of the milling time by means of x-ray diffraction, infrared absorption, scanning and transmission electron microscopy, and chemical analysis. Complete fcc-SiC (β-phase) alloy powders were obtained after 1080 ks of continuous milling. The lattice parameter (a0) of the formed β-SiC was calculated to be 0.4357 nm. No free silicon and/or carbon crystals were observed. The existence of transverse optical (TO) and longitudinal optical (LO)-like phonon modes is observed for the end-product alloy powders. Mechanically alloyed β-SiC powders are stable at elevated temperatures (1773 K) and did not transform to any other phases. The end-product β-SiC alloy powders possess excellent morphological properties, such as homogeneous shape (spherical morphology) with fine and smooth surface relief and uniform size (less than 0.5 μm in diameter). The fabricated β-SiC alloy powders have fine cell-like structure with nanoscale dimensions of about 7 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below.

References

1Koch, C. C., Cavin, O. B., McKamey, C.G., and Scarbourgh, J.O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
2Sherif El-Eskandarany, M., Aoki, K., and Suzuki, K., J. Less-Com. Met. 167, 113 (1990).CrossRefGoogle Scholar
3Benjamin, J. S., Metall. Trans. 1A, 2943 (1970).Google Scholar
4Wright, I. G. and Wilcox, A., Metall. Trans. 5A, 957 (1974).CrossRefGoogle Scholar
5Benjamin, J. S., Sci. Am. 40, 234 (1976).Google Scholar
6Benjamin, J.S. and Bomford, M. J., Metall. Trans. 8A, 1301 (1977).CrossRefGoogle Scholar
7Gilman, P. S. and Nix, W. D., Metall. Trans. 12A, 813 (1981).CrossRefGoogle Scholar
8Schwarz, R. B., Srinivasan, S., and Desch, P. B., Mater. Sci. Forum. 88–90, 595 (1992).CrossRefGoogle Scholar
9Nash, P., Kim, H., Choo, H., Ardy, H., Hwang, S. J., and Nash, A. S., Mater. Sci. Forum. 88–90, 603 (1992).CrossRefGoogle Scholar
10Eckert, J., Mater. Sci. Forum. 88–90, 679 (1992).CrossRefGoogle Scholar
11Gaffet, E., Malhouroux, N., and Abdellaoui, M., J. Alloys Comp. 194, 339 (1993).CrossRefGoogle Scholar
12Politis, C. and Johnson, W. L., J. Appl. Phys. 60, 1147 (1986).CrossRefGoogle Scholar
13Schwarz, R. and Koch, C. C., Appl. Phys. Lett. 49, 146 (1986).CrossRefGoogle Scholar
14Lee, P. Y. and Koch, C. C., J. Non-Cryst. Solids 94, 88 (1987).CrossRefGoogle Scholar
15Hellstern, E. and Schultz, L., J. Appl. Phys. 63, 1408 (1988).CrossRefGoogle Scholar
16Suzuki, K., J. Non-Cryst. Solids 112, 23 (1989).CrossRefGoogle Scholar
17Gaffet, E. and Harmelin, M., J. Less-Comm. Met. 157, 201 (1990).CrossRefGoogle Scholar
18Jang, J. S. C. and Koch, C. C., J. Mater. Res. 5, 325 (1990).CrossRefGoogle Scholar
19Sherif El-Eskandarany, M., Itoh, F., Aoki, K., and Suzuki, K., J. Non-Cryst. Solids 117/118, 729 (1990).CrossRefGoogle Scholar
20Sherif El-Eskandarany, M., Aoki, K., and Suzuki, K., Scripta Metall. 25, 1695 (1991).CrossRefGoogle Scholar
21Sherif El-Eskandarany, M., Aoki, K., and Suzuki, K., J. Alloys Comp. 177, 229 (1991).CrossRefGoogle Scholar
22Sherif El-Eskandarany, M., Aoki, K., and Suzuki, K., J. Appl. Phys. 72 (7), 2665 (1992).CrossRefGoogle Scholar
23Sherif El-Eskandarany, M., Aoki, K., and Suzuki, K., Mater. Sci. Forum. 88–90, 81 (1992).CrossRefGoogle Scholar
24Sherif El-Eskandarany, M., Aoki, K., and Suzuki, K., Metall. Trans. 23A, 2131 (1992).CrossRefGoogle Scholar
25Sherif El-Eskandarany, M., Aoki, K., and Suzuki, K., J. Appl. Phys. 71 (6), 2924 (1992).CrossRefGoogle Scholar
26Sherif El-Eskandarany, M., Aoki, K., and Suzuki, K., J. Alloys Comp. 186, 15 (1992).CrossRefGoogle Scholar
27Sherif El-Eskandarany, M., Aoki, K., and Suzuki, K., J. Non-Cryst. Solids 150, 472 (1992).CrossRefGoogle Scholar
28Homma, Y., Fukunaga, T., Misawa, M., and Suzuki, K., Mater. Sci. Forum. 88–90, 339 (1992).CrossRefGoogle Scholar
29Gaffet, E., Faudot, F., and Harmelin, M., Mater. Sci. Forum. 88–90, 375 (1992).CrossRefGoogle Scholar
30Yavari, A. R. and Desré, P. J., Mater. Sci. Forum. 88–90, 43 (1992).CrossRefGoogle Scholar
31Kim, K-J., Sherif El-Eskandarany, M., Sumiyama, K., and Suzuki, K., J. Non-Cryst. Solids 155, 165 (1993).CrossRefGoogle Scholar
32Zhang, D. L. and Massalski, T. B., J. Mater. Res. 9, 53 (1994).CrossRefGoogle Scholar
33Ma, E., J. Mater. Res. 9, 592 (1994).CrossRefGoogle Scholar
34Sherif El-Eskandarany, M., Aoki, K., Masumoto, T., and Suzuki, K., J. Alloys Comp. 209, 71 (1994).CrossRefGoogle Scholar
35Tanaka, T., Nasu, S., Ishihara, K. N., and Shingu, P. H., J. Less-Comm. Met. 171, 237 (1991).CrossRefGoogle Scholar
36Tanaka, T., Ishihara, K. N., and Shingu, P. H., Metall. Trans. 23A, 2431 (1992).CrossRefGoogle Scholar
37Le Caer, G., Bauer-Grosse, E., Pianelli, A., Bouzy, E., and Matteazzi, P., J. Mater. Sci. 25, 4726 (1990).CrossRefGoogle Scholar
38Malhouroux-Gaffet, N. and Gaffet, E., J. Alloys Comp. 198, 143 (1993).CrossRefGoogle Scholar
39Gaffet, E. and Malhouroux-Gaffet, N., J. Alloys Comp. 205, 27 (1993).CrossRefGoogle Scholar
40Ma, E., Pagán, J., Cranford, G., and Atzmon, M., J. Mater. Res. 8, 1836 (1993).CrossRefGoogle Scholar
41Calka, A., Appl. Phys. Lett. 60, 1562 (1991).Google Scholar
42Sherif El-Eskandarany, M., Sumiyama, K., Aoki, K., and Suzuki, K., Mater. Sci. Forum. 88–90, 801 (1992).CrossRefGoogle Scholar
43Sherif El-Eskandarany, M., Aoki, K., and Suzuki, K., Appl. Phys. Lett. 60, 1562 (1992).CrossRefGoogle Scholar
44Sherif El-Eskandarany, M., Sumiyama, K., Aoki, K., and Suzuki, K., J. Mater. Res. 7, 888 (1992).CrossRefGoogle Scholar
45Aoki, K., Memezawa, A., and Masumoto, T., J. Mater. Res. 8, 307 (1993).CrossRefGoogle Scholar
46Sherif El-Eskandarany, M., J. Alloys Comp. 203, 117 (1994).CrossRefGoogle Scholar
47Sherif El-Eskandarany, M., Sumiyama, K., Aoki, K., Masumoto, T., and Suzuki, K., J. Mater. Res. 9, 2891 (1994).CrossRefGoogle Scholar
48Aoki, K., Memezawa, A., and Masumoto, T., J. Mater. Res. 9, 39 (1994).CrossRefGoogle Scholar
49Sherif El-Eskandarany, M., Ahmed, H. A., Sumiyama, K., and Suzuki, K., J. Alloys Comp. (1995).Google Scholar
50Chiu, C. C., Desu, S. B., and Tsai, C. Y., J. Mater. Res. 8, 2617 (1993).CrossRefGoogle Scholar
51Sasaki, K., Samkuma, E., Misawa, S., Yoshida, S., and Gonda, S., Appl. Phys. Lett. 45, 72 (1984).CrossRefGoogle Scholar
52ASTM Card No. 1–1119.Google Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 28 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 2nd March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mechanical solid state reaction for synthesis of β–SiC powders
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Mechanical solid state reaction for synthesis of β–SiC powders
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Mechanical solid state reaction for synthesis of β–SiC powders
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *