Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-xl52z Total loading time: 0.468 Render date: 2021-04-19T07:44:49.117Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Measuring the interface stress: Silver/nickel interfaces

Published online by Cambridge University Press:  31 January 2011

D. Josell
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland, 20899
J. E. Bonevich
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland, 20899
I. Shao
Affiliation:
The Johns Hopkins University, Baltimore, Maryland
R. C. Cammarata
Affiliation:
The Johns Hopkins University, Baltimore, Maryland
Get access

Abstract

Interface stress is a surface thermodynamics quantity associated with the reversible work of elastically straining an internal solid interface. In a multilayered thin film, the combined effect of the interface stress of each interface results in an in-plane biaxial volume stress acting within the layers of the film that is inversely proportional to the bilayer thickness. We calculated the interface stress of an interface between {111} textured Ag and Ni on the basis of direct measurements of the dependence of the in-plane elastic strains on the bilayer thickness. The strains were obtained using transmission x-ray diffraction. Unlike previous studies of this type, we used freestanding films so that there was no need to correct for intrinsic stresses resulting from forces applied by the substrate that can lead to large uncertainties of the calculated interface stress value. Based on the lattice parameters of the bulk, pure elements, an interface stress of −2.02 ± 0.26 N/m was calculated using the x-ray diffraction results from films with bilayer thicknesses greater than 5 nm. This value is somewhat smaller than previous measurements obtained from as-deposited films supported by substrates. For smaller bilayer thicknesses the apparent interface stress becomes smaller in magnitude, possibly due to a loss of layering in the specimens.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Cahn, J.W., Acta Metall. 28, 1333 (1980).CrossRefGoogle Scholar
2.Cahn, J.W. and Larche, F., Acta Metall. 30, 51 (1982).CrossRefGoogle Scholar
3.Cammarata, R.C., Prog. Surf. Sci. 46, 1 (1994).CrossRefGoogle Scholar
4.Weissmüller, J. and Cahn, J.W., Acta Mater. 45A, 1899 (1997).CrossRefGoogle Scholar
5.Josell, D., Acta Metall. Mater. 42, 1031 (1994).CrossRefGoogle Scholar
6.Ruud, J.A., Witvrouw, A., and Spaepen, F., J. Appl. Phys. 74, 2517 (1993).CrossRefGoogle Scholar
7. This experiment was proposed independently to D. Josell by J. Weissmüller and R.C. Cammarata.Google Scholar
8.Schweitz, K.O., Geisler, H., Chevallier, J., Bøttiger, J., and Feidenhans'l, R., in Thin Films-Stresses and Mechanical Properties VII, edited by Cammarata, R.C., Nastasi, M.A., Busso, E.P., and Oliver, W.C. (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998), p. 559.Google Scholar
9.Stoney, G.G., Proc. R. Soc. 82, 72 (1909).CrossRefGoogle Scholar
10.Rodmacq, B., J. Appl. Phys. 70, 4194 (1991).CrossRefGoogle Scholar
11.Badawi, K-F., Durand, N., Goudeau, Ph., and Pelosin, V., Appl. Phys. Lett. 65, 3075 (1994).CrossRefGoogle Scholar
12.Gladyszewski, G., Labat, S., Gergaud, P., and Thomas, O., Thin Solid Films 319, 78 (1998).CrossRefGoogle Scholar
13.Labat, S., Thomas, O., Gergaud, P., Charai, A., Alfonso, C., Barrallier, L., Gilles, B., and Marty, A., J. Phys. IV 6, C7135 (1996).Google Scholar
14.Clemens, B.M. and Eesley, G.L., Phys. Rev. Lett. 61, 2356 (1988).CrossRefGoogle Scholar
15.Bain, J.A., Chyung, L.J., Brennan, S., and Clemens, B.M., Phys. Rev. B 44, 1184 (1991).CrossRefGoogle Scholar
16.Shull, A.L. and Spaepen, F., J. Appl. Phys. 80, 6243 (1996).CrossRefGoogle Scholar
17. Card Nos. 04–0850 (Ni) and 64–0783 (Ag), JCPDS-International Center for Diffraction Data V. 1.30 (1997).Google Scholar
18.Schweitz, K.O. (unpublished).Google Scholar
19.Smithells Metals Reference Book, edited by E.A. Brandes (Butterworths, London, 1983), p. 14–1.Google Scholar
20.Schweitz, K.O. (unpublished).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 18 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 19th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Measuring the interface stress: Silver/nickel interfaces
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Measuring the interface stress: Silver/nickel interfaces
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Measuring the interface stress: Silver/nickel interfaces
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *