Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-9dmbd Total loading time: 0.255 Render date: 2021-03-05T18:17:01.921Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Mathematical modeling of cement paste microstructure by mosaic pattern: Part I. Formulation

Published online by Cambridge University Press:  31 January 2011

Yunping Xi
Affiliation:
Department of Civil and Architectural Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Paul D. Tennis
Affiliation:
Department of Civil Engineering Northwestern University, Evanston, Illinois 60208
Hamlin M. Jennings
Affiliation:
Department of Civil Engineering, and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

This paper develops a mathematical model using mosaic patterns to characterize structural features of complex, multiphase, and multidimensional microstructures, such as those for cement paste. A multiphase microstructure can be characterized by m independent parameters; the first m– 1 parameters are equivalent to the volume fractions of the phases, while the final parameter describes the grain size, and thus, the spatial arrangement of the microstructure. An evaluation procedure for the parameters is given; they can be evaluated based on a 2D image, and then the 3D microstructure can be simulated by the present model. The relationship among the model parameters and material parameters, such as water-to-cement ratio and particle size distribution, are also established.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Jennings, H.M. and Johnson, S. K., J. Am. Ceram. Soc. 69, 790795 (1986).CrossRefGoogle Scholar
2.Bentz, D. P. and Garboczi, E.J., Ceramic Transactions, Vol. 16, Advances in Cementitious Materials, edited by Mindess, S. (The American Ceramic Society, Inc., Westerville, OH, 1990), pp. 211226.Google Scholar
3.Bentz, D. P., Garboczi, E.J., Gingold, D., Lobb, C. J., and Jennings, H. M., Ceramic Transactions, Vol. 16, Advances in Cementitious Materials, edited by Mindess, S. (The American Ceramic Society, Inc., Westerville, OH, 1990), pp. 227235.Google Scholar
4.Bentz, D. P. and Garboczi, E. J., ACI Mater. J. 88 (5), September-October, 518529 (1991).Google Scholar
5.Naganuma, T., Deodatis, G., Shinozuka, M., and Samaras, E., Proc. 4th Int. Conf. on Structural Safety and Reliability, I, 251260 (1985).Google Scholar
6.Shinozuka, M., Engineering Mechanics Division, ASCE 98 (6), 14331451 (1972).Google Scholar
7.Yamazaki, F. and Shinozuka, M., Structural Eng./Earthquake Eng. 5 (2), Japan Society of Civil Engineers (Proc. of ASCE No. 398/I-10), 313s323s (1988).Google Scholar
8.Bazant, Z. P. and Xi, Y., in Materials Research in Concrete (Vom Werkstoff Zur Konstruktion, Karlsruhe, 1990), pp. 249267.Google Scholar
9.Bazant, Z. P. and Xi, Y., Eng, J.. Mechanics Division, ASCE 119 (1), 301322 (1993).Google Scholar
10.Delhomme, J. P., Adv. Water Resources 1 (5), 251266 (1978).CrossRefGoogle Scholar
11.de Marsily, G., in Fundamentals of Transport Phenomena in Porous Media, edited by Bear, J. and Corapcioglu, M. Y. (NATO ASI Series, Series E: Applied Sciences–No. 82, Martinus Nijhoff Publishers, New York, 1984), pp. 721764.Google Scholar
12.Smith, L. and Freeze, R. A.Water Resources Research 15 (6) Dec. 15431559 (1979).CrossRefGoogle Scholar
13.Delhomme, J. P., Water Resources Research 15 (2), April 269280 (1979).CrossRefGoogle Scholar
14.Legendre, P. and Fortin, M. J., Vegetatio (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989), pp. 107138.Google Scholar
15.Dale, M.R.T. and MacISAAC, D.A., J. Ecology 77, 7891 (1989).CrossRefGoogle Scholar
16.Bartlett, M. S., Adv. Appl. Prob. 6, 336358 (1974).CrossRefGoogle Scholar
17.Pielou, E. C., Biometrics, March, 156167 (1964).CrossRefGoogle Scholar
18.Pielou, E. C., Mathematical Ecology (John Wiley / Sons, New York, 1977).Google Scholar
19.Schon, M., J. Hirnforsch 27 (4), 401408 (1986).Google Scholar
20.Cole, L. C., Ecology 30, 411424 (1949).CrossRefGoogle Scholar
21.David, H. A., Order Statistics (Wiley, New York, 1970).Google Scholar
22.Kendall, M. G. and Moran, P. A. P., Geometrical Probability (Hafner Publishing Company, New York, 1963).Google Scholar
23.Coverdale, R. T., Garboczi, E.J., Jennings, H. M., Christensen, B. J., and Mason, T.O., J. Am. Ceram. Soc. (1993).Google Scholar
24.Kemeny, J. G. and Snell, J. L., Finite Markov Chain (van Nostrand, New York, 1960).Google Scholar
25.Saxl, I., Stereology of Objects with Internal Structure (Elsevier, Amsterdam, 1989).Google Scholar
26.Underwood, E. E., Quantitative Stereology (Addison-Wesley Publishing Company, London, 1970).Google Scholar
27.Serra, J., Image Analysis and Mathematical Morphology, Vol. 1 (Academic Press, London, 1982).Google Scholar
28.Serra, J., Image Analysis and Mathematical Morphology, Vol. 2: Theoretical Advances (Academic Press, Harcourt Brace Jovanovich, Publishers, London, 1988).Google Scholar
29.Attiogbe, E. K., ACI Mater. J. 90 (2), March–April, 174181 (1993).Google Scholar
30.Solomon, H., CBMS-NSF, Regional Conf. Series in Applied Mathematics (Soc. for Industrial and Applied Math., Philadelphia, PA, 1978).Google Scholar
31.Kendall, M. G. and Stuart, A., The Advanced Theory of Statistics 2, 2nd ed. (Griffin, London, 1967).Google Scholar
32.Fellous, A., Granara, J., and Krickeberg, K., Lecture Notes in Biomathematics, 23, Managing Editor S. Levin, Geometrical Probability and Biological Structures: Buffon's 200th Anniversary, edited by Miles, R.E. and Serra, J. (Springer-Verlag, Berlin, 1978).Google Scholar
33.Underwood, E. E., Stereology and Quantitative Metallography (1972).Google Scholar
34.Goudsmit, S., Rev. Mod. Phys. 17, 321322 (1945).CrossRefGoogle Scholar
35.Bezjak, A., Cement and Concrete Research 16, 260264 (1986).CrossRefGoogle Scholar
36.Knudsen, T., Cement and Concrete Research 14, 622630 (1984).CrossRefGoogle Scholar
37.Bentz, D. P., Coveney, P. V., Garboczi, E.J., Kleyn, M. F., and Stutzman, P.E., Modelling and Stimulation in Materials Science and Engineering 2, 783808 (1994).CrossRefGoogle Scholar
38.Tennis, P. D., Jennings, H.M., and Xi, Y., J. Mater. Res. (1996, submitted).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 16 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mathematical modeling of cement paste microstructure by mosaic pattern: Part I. Formulation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Mathematical modeling of cement paste microstructure by mosaic pattern: Part I. Formulation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Mathematical modeling of cement paste microstructure by mosaic pattern: Part I. Formulation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *