Hostname: page-component-797576ffbb-42xl8 Total loading time: 0 Render date: 2023-12-10T05:51:18.241Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Island growth of Y2BaCuO5 nanoparticles in (211∼1.5 nm/123∼10 nmN composite multilayer structures to enhance flux pinning of YBa2Cu3O7−δ films

Published online by Cambridge University Press:  31 January 2011

T. Haugan*
Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7919
P.N. Barnes
Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7919
I. Maartense
Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7919
C.B. Cobb
Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7919
E.J. Lee
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
M. Sumption
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
a)Address all correspondence to this author. e-mail:
Get access


A controlled introduction of second-phase Y2BaCuO5 (211) nanoparticles into YBa2Cu3O7−δ (123) thin films was achieved for the first time for the purpose of increasing flux pinning. The island-growth mode of 211 on 123 was utilized to obtain an area particle density >1011 cm-2 of 211 thick-disk-shaped nanoparticles in individual layers. Composite layered structures of (211y nanoparticles/123zN were deposited by pulsed laser deposition on LaAlO3 substrates, with N bilayers = 24 to 100, y thickness = 1 to 2 nm, and z thickness = 6 to 15 nm (assuming continuous layer coverage). With 211 addition, the critical current densities at 77 K were higher at magnetic fields as low as 0.1 T and increased as much as approximately 300% at 1.5 T. The superconducting transition temperature was reduced by approximately 2 to 4 K for 211 volume fraction <20%. Reinitiation of 123 growth after every 211 layer resulted in a smooth and flat surface finish on the films and also greatly reduced surface particulate formation especially in thicker films (∼ μm).

Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1.Bourdillon, A. and Bourdillon, N.X. Tan, High Temperature Superconductors: Processing and Science (Academic Press, San Diego CA, 1994).Google Scholar
2.Larbalestier, D., Gurevich, A., D. Matthew Feldmann, and Polyanskii, A., Nature 414, 368 (2001).Google Scholar
3.Murakami, M., Shaw, D.T., and Jin, S., in Processing and Properties of High T c Superconductors Volume 1, Bulk Materials, edited by Jin, S. (World Scientific Publishing, River Edge, NJ, 1993).Google Scholar
4.Larbalestier, D.C. and Maley, M.P., Mater. Res. Bull. August (1993), p. 50.Google Scholar
5.Iijima, Y., Onabe, K., Tugaki, N., Tanabe, N., Sadakara, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).Google Scholar
6.Wu, X.D., Foltyn, S.R., Arendt, P.N., Blumenthal, W.R., Campbell, I.H., Cotton, J.D., Coulter, J.Y., Hults, W.L., Maley, M.P., Safar, H.F., and Smith, J.L., Appl. Phys. Lett. 67, 2397 (1995).Google Scholar
7.Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hartfield, E., and Sikka, V.K., Appl. Phys. Lett. 69, 1795 (1996).Google Scholar
8.Foltyn, S.R., Peterson, E.J., Coulter, J.Y., Arendt, P.N., Jia, Q.X., Dowden, P.C., Maley, M.P., Wu, X.D., and Peterson, D.E., J. Mater. Res. 12, 2941 (1997).Google Scholar
9.Aytug, T., Paranthaman, M., Sathyamurthy, S., Kang, B.W., Beach, D.B., Specht, E.D., Lee, D.F., Feenstra, R., Goyal, A., Kroeger, D.M., Leonard, K.J., Martin, P.M., and Christen, D.K., ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 2001, <>..>Google Scholar
10.Takezawa, N. and Fukushima, K., Physica C 290, 31 (1997).Google Scholar
11.Phase Diagrams for High T c Superconductors, edited by Whitler, J.D. and Roth, R.S. (American Ceramic Society, Westerville OH, 1991).Google Scholar
12.Skakle, J.M.S., Mater. Sci. Eng. R23, 1 (1998).Google Scholar
13.Reichelt, K., Vacuum 38 (12), 1083 (1988).Google Scholar
14.Pan, V.M., Kaminsky, G.G., Kasatkin, A.L., Kuznetsov, M.A., Prokhorov, V.G., Svetchnikov, V.L., Tretiatchenko, C.G., Flis, V.S., Yushchenko, S.K., Matsui, V.I., and Melnikov, V.S., Supercond. Sci. Technol. 5, S48 (1992).Google Scholar
15.Murakami, M., Gotoh, S., Fujimoto, H., Yamaguchi, K., Koshizuka, N., and Tanaka, S., Supercond. Sci. Technol. 4, S43 (1991).Google Scholar
16.Jin, S., Kamlott, G.W., Tiefel, T.H., Kodas, T., Ward, T.L., and Kroeger, D.M., Physica C 181, 57 (1992).Google Scholar
17.Shi, D., Sengupta, S., Luo, J.S., Varanasi, C., and McGinn, P.J., Physica C 213, 179 (1993).Google Scholar
18.Chopra, M., Chan, S.W., Meng, R.L., and Chu, C.W., J. Mater. Res. 11, 1616 (1996).Google Scholar
19.Sengupta, S., Shi, D., Luo, J.S., Buzdin, A., Gorin, V., Todt, V.R., Varanasi, C., and McGinn, P.J., J. Appl. Phys. 81, 7396 (1997).Google Scholar
20.Zhou, L., Chen, S.K., Wang, K.G., Wu, X.Z., Zhang, P.X., and Feng, Y., Physica C 363, 99 (2001).Google Scholar
21.Haugan, T., Barnes, P., Nekkanti, R., Maartense, I., Brunke, L., and Murphy, J., in Extended Abstracts of the 2001 International Workshop on Superconductivity Co-Sponsored by ISTEC and MRS (ISTEC, Minato-ku, Japan, 2001), p. 111.Google Scholar
22.Haugan, T.J., Barnes, P.N., Nekkanti, R.M., Maartense, I., Brunke, L.B., and Murphy, J. in Materials for High-Temperature Superconductor Technologies, edited by Paranthaman, M.P., Rupich, M.W., Salama, K., Mannhart, J., and Hasegawa, T. (Mater. Res. Soc. Symp. Proc. 689, Warrendale, PA, 2002), pp. 217221.Google Scholar
23.Ekin, J.W., Larson, T.M., Bergren, N.F., Nelson, A.J., Swartzlander, A.B., Kazmerski, L.L., Panson, A.J., and Blankenship, B.A., Appl. Phys. Lett. 52, 1819 (1988).Google Scholar
24.Goodrich, L.F., Srivastava, A.N., Stauffer, T.C., Roshko, A., and Vale, L.R., IEEE Trans Appl. Supercond. 4, 61 (1994).Google Scholar
25.Maartense, I., Sarkar, A.K., and Kozlowski, G., Physica C 181, 25 (1991).Google Scholar
26.Sarkar, A., Kumar, B., Maartense, I., and Peterson, T.L., J. Appl. Phys. 65, 2392 (1989).Google Scholar
27.Thompson, J.R., Krusin-Elbaum, L., Kim, Y.C., Christen, D.K., Marwick, A.D., Wheeler, R., Li, C., Patel, S., Shaw, D.T., Lisowski, P., and Ullmann, J., IEEE Trans. Appl. Supercond. 5, 1876 (1995).Google Scholar
28.Thompson, J.R., Ossandon, J.G., Krusin-Elbaum, L., Kim, H.J., Song, K.J., Christen, D.K., and Ullmann, J.L., Physica C 378–381 (2002), p. 409.Google Scholar
29.Jia, Q.X., Foltyn, S.R., Arendt, P.N., and Smith, J.F., Appl. Phys. Lett. 80, 1601 (2002).Google Scholar