Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-qpj69 Total loading time: 0.193 Render date: 2021-03-06T06:16:58.123Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Influence of the loading rate on the indentation response of Ti-based metallic glass

Published online by Cambridge University Press:  31 January 2011

J. Sort
Affiliation:
Institució Catalana de Recerca i Estudis Avançats and Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
J. Fornell
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
W. Li
Affiliation:
School of Materials Science and Engineering, Anhui University of Technology, 243002 Maanshan Anhui, China
S. Suriñach
Affiliation:
Institució Catalana de Recerca i Estudis Avançats and Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
M.D. Baró
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Corresponding
E-mail address:
Get access

Abstract

The mechanical behavior of Ti-based metallic glass has been investigated by means of indentation experiments at different loading rates. Contrary to many crystalline materials, an increase of the loading rate causes a reduction of hardness, i.e., a mechanical softening. This effect is ascribed to deformation-induced creation of excess free volume, which is more pronounced for higher strain rates. The decrease of hardness is accompanied with an increase of the contact stiffness and a reduction of the reduced elastic modulus. Finite element simulations reveal that the mechanical response of this material can be described using the Mohr-Coulomb yield criterion. The changes in the nanoindentation curves with the increase of loading rate are well reproduced by decreasing the value of the Mohr-Coulomb cohesive stress. This result is consistent with the presumed enhancement of free volume.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Bhushan, B.: Nanotribology and nanomechanics in nano/biotechnology. Philos. Trans. R. Soc. London, Ser. A 366, 1499 (2008).CrossRefGoogle ScholarPubMed
2.Fischer-Cripps, A.C.: Nanoindentation, 1st ed. (Springer-Verlag Inc., New York, 2002).CrossRefGoogle Scholar
3.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
4.Mukhopadhyay, N.K. and Paufler, P.: Micro- and nanoindentationtechniques for mechanical characterisation of materials. Int. Mater. Rev. 51, 209 (2006).CrossRefGoogle Scholar
5.Cheng, Y.T. and Cheng, C.M.: Scaling relationships in conical indentation of elastic-perfectly plastic solids. Int. J. Solids Struct. 36, 1231 (1999).CrossRefGoogle Scholar
6.Schuh, C.A.: Nanoindentation studies of materials. Mater. Today 9, 32 (2006).CrossRefGoogle Scholar
7.Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).CrossRefGoogle Scholar
8.Ramamurty, U., Jana, S., Kawamura, Y., and Chattopadhyay, K.: Hardness and plastic deformation in a bulk metallic glass. Acta Mater. 53, 705 (2005).CrossRefGoogle Scholar
9.Schuh, C.A. and Nieh, T.G.: A survey of instrumented indentation studies on metallic glasses. J. Mater. Res. 19, 46 (2004).CrossRefGoogle Scholar
10.Schuh, C.A., Lund, A.C., and Nieh, T.G.: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).CrossRefGoogle Scholar
11.Yang, B. and Nieh, T.G.: Effect of the nanoindentation rate on the shear band formation in an Au-based bulk metallic glass. Acta Mater. 55, 295 (2007).CrossRefGoogle Scholar
12.Schuh, C.A., Argon, A.S., Nieh, T.G., and Wadsworth, J.: The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal. Philos. Mag. 83, 2585 (2003).CrossRefGoogle Scholar
13.Spaepen, F.: Microscopic mechanism for steady-state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
14.van Aken, B., de Hey, P., and Sietsma, J.: Structural relaxation and plastic flow in amorphous La50Al25Ni25. Mater. Sci. Eng., A 278, 247 (2000).CrossRefGoogle Scholar
15.de Hey, P., Sietsma, J., and van Den Beukel, A.: Structural disordering in amorphous Pd40Ni40P20 induced by high temperature deformation. Acta Mater. 46, 5873 (1998).CrossRefGoogle Scholar
16.van Steenberge, N., Sort, J., Concustell, A., Das, J., Scudino, S., Suriñach, S., Eckert, J., and Baró, M.D.: Dynamic softening and indentation size effect in a Zr-based bulk glass-forming alloy. Scr. Mater. 56, 605 (2007).CrossRefGoogle Scholar
17.Yang, F., Geng, K., Liaw, P.K., Fan, G., and Choo, H.: Deformation in a Zr57Ti5Cu20Ni8Al10 bulk metallic glass during nanoindentation. Acta Mater. 55, 321 (2007).CrossRefGoogle Scholar
18.Schuh, C.A. and Lund, A.C.: Atomistic basis for the plastic yield criterion of metallic glass. Nat. Mater. 2, 449 (2003).CrossRefGoogle ScholarPubMed
19.Vaidyanathan, R., Dao, M., Ravichandran, G., and Suresh, S.: Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater. 49, 3781 (2001).CrossRefGoogle Scholar
20.Lund, A.C. and Schuh, C.A.: The Mohr-Coulomb criterion from unit shear processes in metallic glass. Intermetallics 12, 1159 (2004).CrossRefGoogle Scholar
21.Ogata, S., Shimizu, F., Li, J., Wakeda, M., and Shibutani, Y.: Atomistic simulation of shear localization in Cu-Zr bulk metallic glass. Intermetallics 14, 1033 (2006).CrossRefGoogle Scholar
22.Fornell, J., Concustell, A., Suriñach, S., Li, W., Cuadrado, N., Gebert, A., Baró, M.D., and Sort, J.: Yielding and intrinsic plasticity of Ti-Zr-Ni-Cu-Be bulk metallic glass. Int. J. Plast. (2009 DOI: 10.1016/j.ijplas.2008.11.002).CrossRefGoogle Scholar
23.Lewandowski, J.J. and Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006).CrossRefGoogle Scholar
24.Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity., J. Mech. Phys. Solids 46, 411 (1998).CrossRefGoogle Scholar
25.Strader, J.H., Shim, S., Bei, H., Oliver, W.C., and Pharr, G.M.: An experimental evaluation of the constant β relating the contact stiffness to the contact area in nanoindentation. Philos. Mag. 86, 5285 (2006).CrossRefGoogle Scholar
26.King, R.B.: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657 (1987).CrossRefGoogle Scholar
27.Wei, B.C., Zhang, T.H., Zhang, L.C., Xing, D.M., Li, W.H., and Liu, Y.: Plastic deformation in Ce-based bulk metallic glasses during depth-sensing indentation. Mater. Sci. Eng., A 449–451, 962 (2007).CrossRefGoogle Scholar
28.Liu, L. and Chan, K.C.: Plastic deformation of Zr-based bulk metallic glasses during nanoindentation. Mater. Lett. 59, 3090 (2005).CrossRefGoogle Scholar
29.Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A., and Higashi, K.: Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071 (2002).CrossRefGoogle Scholar
30.Hufnagel, T.C., Jiao, T., Li, Y., Xing, L.Q., and Ramesh, K.T.: Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. J. Mater. Res. 17, 1441 (2002).CrossRefGoogle Scholar
31.Concustell, A., Sort, J., Greer, A.L., and Baró, M.D.: Anelastic deformation of a Pd40Cu30Ni10P20 bulk metallic glass during nanoindentation. Appl. Phys. Lett. 88, 171911 (2006).CrossRefGoogle Scholar
32.Lee, Y.H., Kim, J.Y., Nahm, S.H., and Kwon, D.: Loading rate effect on inelastic deformation in a Zr-based bulk metallic glass. Mater. Sci. Eng., A 449–451, 185 (2007).Google Scholar
33.Jiang, W.H., Fan, G.J., Liu, F.X., Wang, G.Y., Choo, H., and Liaw, P.K.: Rate dependence of shear banding and serrated flows in a bulk metallic glass. J. Mater. Res. 21, 2164 (2006).CrossRefGoogle Scholar
34.Narasimhan, R.: Analysis of indentation of pressure sensitive plastic solids using the expanding cavity model. Mech. Mater. 36, 633 (2004).CrossRefGoogle Scholar
35.Anand, L. and Su, C.: A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses. J. Mech. Phys. Solids 53, 1362 (2005).CrossRefGoogle Scholar
36.Zhao, J.: Applicability of the Mohr-Coulomb and Hoek-Brown strength criteria to the dynamic strength of brittle rock. Int.J. Rock Mech. Min. Sci. 37, 1115 (2000).CrossRefGoogle Scholar
37.Ott, R.T., Sansoz, F., Jiao, T., Warner, D., Fan, C., Molinari, J.F., Ramesh, K. T., and Hufnagel, T.C.: Yield criteria and strain-rate behavior of Zr57.4Cu16.4Ni8.2Ta8Al10 metallic glass-matrix composites. Metall. Mater. Trans. A 37, 3251 (2006).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 49 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 6th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Influence of the loading rate on the indentation response of Ti-based metallic glass
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Influence of the loading rate on the indentation response of Ti-based metallic glass
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Influence of the loading rate on the indentation response of Ti-based metallic glass
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *