Hostname: page-component-788cddb947-tr9hg Total loading time: 0 Render date: 2024-10-10T02:34:36.107Z Has data issue: false hasContentIssue false

Improved reversible dehydrogenation of 2LiBH4+MgH2 system by introducing Ni nanoparticles

Published online by Cambridge University Press:  27 April 2011

Jianfeng Mao
Affiliation:
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia
Zaiping Guo*
Affiliation:
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia; and School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, Wollongong, New South Wales 2522, Australia
Xuebin Yu*
Affiliation:
Institute for Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522, Australia; and Department of Materials Science, Fudan University, Shanghai 200433, China
Huakun Liu
Affiliation:
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia
*
a)Address all correspondence to these authors. e-mail: zguo@uow.edu.au
Get access

Abstract

We report that the hydrogen de/resorption of the 2LiBH4+MgH2 system was modified by introducing Ni nanoparticles. Dehydrogenation analysis revealed that the first-step dehydrogenation, i.e., the decomposition of MgH2, can be significantly promoted by adding a small amount of Ni because of the catalytic effect. However, the improvement of the second-step dehydrogenation, corresponding to the decomposition of LiBH4, needs the addition of a large amount of Ni, resulting in the formation of a Mg–Ni–B ternary alloy. Furthermore, the presence of the Mg–Ni–B ternary alloy allowed an increased reversible H-capacity, in which about 5.3 wt% of hydrogen can be rehydrogenated under 400 °C and 55 bar hydrogen pressure over 10 h, which is higher than that of the pristine 2LiBH4+MgH2 system (4.4 wt%).

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schlapbach, L. and Züttel, A.: Hydrogen-storage materials for mobile applications. Nature 414, 353 (2001).CrossRefGoogle ScholarPubMed
2.Grochala, W. and Edwards, P.P.: Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem. Rev. 104, 1283 (2004).CrossRefGoogle ScholarPubMed
3.DOE targets for onboard hydrogen storage systems for light-duty vehicles: Available at http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage.pdf. (Jan. 4, 2004).Google Scholar
4.Bogdanović, B. and Schwickardi, M.: Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen-storage materials. J. Alloy. Comp. 253, 1 (1997).CrossRefGoogle Scholar
5.Chen, J., Kuriyama, N., Xu, Q., Takeshita, H.T., and Sakai, T.: Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6. J. Phys. Chem. B 105, 11214 (2001).CrossRefGoogle Scholar
6.Mao, J.F., Yu, X.B., Guo, Z.P., Poh, C.K., Liu, H.K., Wu, Z., and Ni, J.: Improvement of the LiAlH4-NaBH4 system for reversible hydrogen storage. J. Phys. Chem. C 113, 10813 (2009).CrossRefGoogle Scholar
7.Chen, P., Xiong, Z.T., Luo, J., Lin, J., and Tan, K.: Interaction of hydrogen with metal nitrides and imides. Nature 420, 302 (2002).CrossRefGoogle ScholarPubMed
8.Luo, W.F.: (LiNH2-MgH2): A viable hydrogen storage system. J. Alloy. Comp. 381, 284 (2004).CrossRefGoogle Scholar
9.Züttel, A., Rentsch, S., Fischer, P., Wenger, P., Sudan, P., Mauron, Ph., and Emmenegger, C.: Hydrogen storage properties of LiBH4. J. Alloy. Comp. 356, 515 (2003).CrossRefGoogle Scholar
10.Orimo, S., Nakamori, Y., Kitahara, G., Miwa, K., Ohba, N., Towata, S., and Züttel, A.: Dehydriding and rehydriding reactions of LiBH4. J. Alloy. Comp. 404, 427 (2005).CrossRefGoogle Scholar
11.Laversenne, L. and Bonnetot, B.: Hydrogen storage using borohydrides. Ann. Chim. Sci. Mat. 30, 495 (2005).CrossRefGoogle Scholar
12.Nakamori, Y., Miwa, K., Ninomiya, A., Li, H., Ohba, N., Towata, S.I., Züttel, A., and Orimo, S.: Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites: First-principles calculations and experiments. Phys. Rev. B 74, 045126 (2006).CrossRefGoogle Scholar
13.Mauron, P., Buchter, F., Friedrichs, O., Remhof, A., Bielmann, M., Christoph, N.Z., and Züttel, A.: Stability and reversibility of LiBH4. J. Phys. Chem. B 112, 906 (2008).CrossRefGoogle ScholarPubMed
14.Orimo, S., Nakamori, Y., Ohba, N., Miwa, K., Aoki, M., Towata, S., and Züttel, A.: Experimental studies on intermediate compound of LiBH4. Appl. Phys. Lett. 89, 021920 (2006).CrossRefGoogle Scholar
15.Her, J.-H., Yousufuddin, M., Zhou, W., Jalisatgi, S.S., Kulleck, J.G., Zan, J.A., Hwang, S.-J., Bowman, R.C., and Udovic, T.J.: Crystal structure of Li2B12H12: A possible intermediate species in the decomposition of LiBH4. Inorg. Chem. 47, 9757 (2008).CrossRefGoogle ScholarPubMed
16.Hwang, S.-J., Bowman, R.C., Reiter, J.W. Jr., Rijssenbeek, J., Soloveichik, G.L., Zhao, J.-C., Kabbour, H., and Ahn, C.C.: NMR confirmation for formation of [B12H12]2− complexes during hydrogen desorption from metal borohydrides. J. Phys. Chem. C 112, 3164 (2008).CrossRefGoogle Scholar
17.Zhang, Y., Zhang, W.S., Wang, A.Q., Sun, L.X., Fan, M.Q., Chu, H.L., Sun, J.C., and Zhang, T.: LiBH4 nanoparticles supported by disordered mesoporous carbon: Hydrogen storage performances and destabilization mechanisms. Int. J. Hydrogen Energy 32, 3976 (2007).CrossRefGoogle Scholar
18.Gross, A.F., Vajo, J.J., Van Atta, S.L., and Olson, G.L.: Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds. J. Phys. Chem. C 112, 5651 (2008).CrossRefGoogle Scholar
19.Yu, X.B., Wu, Z., Chen, Q., Li, Z., Weng, B., and Huang, T.: Improved hydrogen storage properties of LiBH4 destabilized by carbon. Appl. Phys. Lett. 90, 034106 (2007).CrossRefGoogle Scholar
20.Yang, J., Sudik, A., and Wolverton, C.: Destabilizing LiBH4 with a metal (M = Mg, Al, Ti, V, Cr, or Sc) or metal hydride (MH2= MgH2, TiH2, or CaH2). J. Phys. Chem. C 111, 19134 (2007).CrossRefGoogle Scholar
21.Yu, X.B., Grant, D.M., and Walker, G.S.: Low-Temperature dehydrogenation of LiBH4 through destabilization with TiO2. J. Phys. Chem. C 112, 11059 (2008).CrossRefGoogle Scholar
22.Au, M. and Jurgensen, A.: Modified lithium borohydrides for reversible hydrogen storage. J. Phys. Chem. B 110, 7062 (2006).CrossRefGoogle ScholarPubMed
23.Au, M., Jurgensen, A., Spencer, W., Anton, D., Pinkerton, F.E., Hwang, S., Kim, C., and Bowman, R.: Stability and reversibility of lithium borohydrides doped by metal halides and hydrides. J. Phys. Chem. C 112, 18661 (2008).CrossRefGoogle Scholar
24.Vajo, J.J., Skeith, S.L., and Mertens, F.: Reversible storage of hydrogen in destabilized LiBH4. J. Phys. Chem. B 109, 3719 (2005).CrossRefGoogle ScholarPubMed
25.Yu, X.B., Grant, D.M., and Walker, G.S.: A new dehydrogenation mechanism for reversible multicomponent borohydride systems—The role of Li–Mg alloys. Chem. Commun. 37, 3906 (2006).CrossRefGoogle Scholar
26.Pinkerton, F.E., Meyer, M.S., Meisner, G.P., Balogh, M.P., and Vajo, J.J.: Phase boundaries and reversibility of LiBH4/MgH2 hydrogen storage material. J. Phys. Chem. C 111, 12881 (2007).CrossRefGoogle Scholar
27.Bösenberg, U., Ravnsbæk, D.B., Hagemann, H., Anna, V.D., Minella, C.B., Pistidda, C., Beek, W.V., Jensen, T.R., Bormann, R., and Dornheim, M.: Pressure and temperature influence on the desorption pathway of the LiBH4−MgH2 composite system. J. Phys. Chem. C 114, 15212 (2010).CrossRefGoogle Scholar
28.Shang, C.X., Bououdina, M., Song, Y., and Guo, Z.X.: Mechanical alloying and electronic simulations of (MgH2 + M) systems (M-Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage. Int. J. Hydrogen Energy 29, 73 (2004).CrossRefGoogle Scholar
29.Hanada, N., Ichikawa, T., and Fujii, H.: Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. J. Phys. Chem. B 109, 7188 (2005).CrossRefGoogle ScholarPubMed
30.Mao, J.F., Guo, Z.P., Yu, X.B., Liu, H.K., Wu, Z., and Ni, J.: Enhanced hydrogen sorption properties of Ni and Co-catalyzed MgH2. Int. J. Hydrogen Energy 35, 4569 (2010).CrossRefGoogle Scholar
31.Xia, G.L., Guo, Y.H., Wu, Z., and Yu, X.B.: Enhanced hydrogen storage performance of LiBH4-Ni composite. J. Alloy. Comp. 479, 545 (2009).CrossRefGoogle Scholar
32.Fang, Z.Z., Kang, X.D., Wang, P., and Cheng, H.M.: Improved reversible dehydrogenation of lithium borohydride by milling with as-prepared single-walled carbon nanotubes. J. Phys. Chem. C 112, 17023 (2008).CrossRefGoogle Scholar
33.Li, W., Vajo, J.J., Cumberland, R.C., Liu, P., Hwang, S.J., Kim, C., and Bowman, R.C.: Hydrogenation of magnesium nickel boride for reversible hydrogen storage. J. Phys. Chem. Lett. 1, 69 (2010).CrossRefGoogle Scholar
34.Zhang, Y., Tian, Q.F., Chu, H.L., Zhang, J., Sun, L.X., Sun, J.C., and Wen, Z.S.: Hydrogen de/resorption properties of the LiBH4-MgH2-Al system. J. Phys. Chem. C 113, 21964 (2009).CrossRefGoogle Scholar
35.Mao, J.F., Guo, Z.P., Leng, H.Y., Wu, Z., Guo, Y.H., Yu, X.B., and Liu, H.K.: Reversible hydrogen storage in destabilized LiAlH4-MgH2-LiBH4 ternary-hydride system doped with TiF3. J. Phys. Chem. C 114, 11643 (2010).CrossRefGoogle Scholar
36.Nakagawa, T., Ichikawa, T., Hanada, N., Kojima, Y., and Fujii, H.: Thermal analysis on the Li-Mg-B-H systems. J. Alloy. Comp. 446, 306 (2007).CrossRefGoogle Scholar
37.Zeng, L., Miyaoka, H., Ichikawa, T., and Kojima, Y.: Superior hydrogen exchange effect in the MgH2-LiBH4 system. J. Phys. Chem. C 114, 13132 (2010).CrossRefGoogle Scholar
38.Manfrinetti, P., Pani, M., Dhar, S.K., and Kulkarni, R.: Structure, transport and magnetic properties of MgNi3B2. J. Alloy. Comp. 428, 94 (2007).CrossRefGoogle Scholar
39.Reilly, J.J. and Wiswall, R.H.: Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg. Chem. 7, 2254 (1968).CrossRefGoogle Scholar
40.Kamegawa, A., Goto, Y., Kataoka, R., Takamura, H., and Okada, M.: High-pressure synthesis of novel compounds in an Mg–Ni system. Renewable Energy 33, 221 (2008).CrossRefGoogle Scholar
41.Shaw, L.L., Wan, X.F., Hu, J.Z., Hwak, J.H., and Yang, Z.G.: Solid-state hydriding mechanism in the LiBH4 + MgH2 system. J. Phys. Chem. C 114, 8089 (2010).CrossRefGoogle Scholar
42.Crosby, K., Wan, X.F., and Shaw, L.L.: Improving solid-state hydriding and dehydriding properties of the LiBH4 plus MgH2 system with the addition of Mn and V dopants. J. Power Sources 195, 7380 (2010).CrossRefGoogle Scholar
43.Bösenberg, U., Kim, J.W., Gosslar, D., Eigen, N., Jensen, T.R., Bellosta von Colbe, J.M., Zhou, Y., Dahms, M., Kim, D.H., Günther, R., Cho, Y.W., Oh, K.H., Klassen, T., Bormann, R., and Dornheim, M.: Role of additives in LiBH4–MgH2 reactive hydride composites for sorption kinetics. Acta Mater. 58, 3381 (2010).CrossRefGoogle Scholar