Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-05T08:15:40.206Z Has data issue: false hasContentIssue false

High temperature creep transitions in single crystalline Ni3Al(Ta, B)

Published online by Cambridge University Press:  03 March 2011

J. Wolfenstine
Affiliation:
Materials Section, Department of Mechanical and Aerospace Engineering, University of California, Irvine, California 92717
H.K. Kim
Affiliation:
Materials Section, Department of Mechanical and Aerospace Engineering, University of California, Irvine, California 92717
J.C. Earthman
Affiliation:
Materials Section, Department of Mechanical and Aerospace Engineering, University of California, Irvine, California 92717
Get access

Abstract

The high temperature (T = 1083–1388 K, 0.65–0.84 Tm) creep behavior of single crystalline Ni3Al(Ta, B) was investigated. A change in the creep characteristics as a function of applied stress was observed at the uppermost testing temperatures of 1288 and 1388 K. At low applied stress levels the Norton law stress exponent is equal to 4.3; for higher stresses the stress exponent is equal to 3.2. Different creep curves were observed, depending on the value of the stress exponent. The change in stress exponent and nature of the creep curve correspond to a change in the controlling deformation mechanism from dislocation climb to viscous dislocation glide for Ni3Al(Ta, B). The experimentally observed transition stress values between climb and viscous glide are in good agreement with values predicted from theory, assuming that the major force retarding viscous dislocation glide in Ni3Al(Ta, B) is the antiphase boundary interaction.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fleischer, R. L., Dimiduk, D. M., and Lipsitt, H. A., Ann. Rev.Mater. Sci. 19, 231 (1989).CrossRefGoogle Scholar
2Chang, K. M., Huang, S. C., Taub, A. I., Chang, G. M., and Morris, J. W. Jr., Metall. Trans. 18A, 1819 (1987).CrossRefGoogle Scholar
3Aoki, K. and Izumi, O., Trans. Jpn. Inst. Met. 19, 203 (1978).CrossRefGoogle Scholar
4Weihs, T. P., Zinoviev, V., Viens, D. V., and Schulson, E. M., Acta Metall. 35, 1109 (1987).CrossRefGoogle Scholar
5Wolfenstine, J., Kim, H. K., and Earthman, J. C., Scripta Metall. et Mater. 26, 1823 (1992).CrossRefGoogle Scholar
6Hemker, K. J. and Nix, W. D., in Proc. 4th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, edited by Wilshire, B. and Evans, R. W. (Inst. of Metals, London, 1990), p. 51.Google Scholar
7Dickson, R. W., Wachtman, J. B. Jr., and Copley, S. M., J. Appl.Phys. 40, 2276 (1969).CrossRefGoogle Scholar
8Cannon, W. R. and Sherby, O. D., Metall. Trans. 1, 1030 (1970).CrossRefGoogle Scholar
9Mohamed, F. A. and Langdon, T. G., Acta Metall. 22, 779 (1974).CrossRefGoogle Scholar
10Takeuchi, S. and Argon, A. S., J. Mater. Sci. 11, 1542 (1976).CrossRefGoogle Scholar
11Soliman, M. S. and Mohamed, F. A., Metall. Trans. 15A, 1893 (1984).CrossRefGoogle Scholar
12Fang, T., Rao Kola, R., and Murty, K. L., Metall. Trans. 17A, 1447 (1986).CrossRefGoogle Scholar
13Yavari, P., Mohamed, F. A., and Langdon, T. G., Acta Metall. 20, 1495 (1981).CrossRefGoogle Scholar
14Sherby, O. D. and Burke, P. M., Prog. Mater. Sci. 13, 325 (1968).CrossRefGoogle Scholar
15Schneibel, J. H. and Horton, J. A., J. Mater. Res. 3, 651 (1988).CrossRefGoogle Scholar
16Hemker, K. J., Mills, M. J., and Nix, W. D., Acta Metall. et Mater. 39, 1901 (1991).CrossRefGoogle Scholar
17Mohamed, F. A., Mater. Sci. Eng. 61, 149 (1983).CrossRefGoogle Scholar
18Hong, S. H. and Weertman, J., Acta Metall. 34, 743 (1986).CrossRefGoogle Scholar
19Flinn, P. A., Trans. Metall. Soc. AIME 233, 714 (1960).Google Scholar
20Fu, C. L. and Yoo, M. H., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p 81.Google Scholar
21Pahutová, M. and Čadek, J., Phys. Status Solidi A 56, 305 (1979).CrossRefGoogle Scholar
22Park, K. T., Lavernia, E. J., and Mohamed, F. A., Acta Metall. et Mater. 38, 1837 (1990).CrossRefGoogle Scholar
23Soliman, M. S., Res Mechanica 21, 155 (1987).Google Scholar
24Kim, H. K. and Mohamed, F. A., Mater. Sci. Eng. A 142, 145 (1991).CrossRefGoogle Scholar
25Baluc, N., Schaublin, R., and Hemker, K. J., Philos. Mag. Lett. 64, 327 (1991).CrossRefGoogle Scholar