Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-10-03T16:05:10.593Z Has data issue: false hasContentIssue false

Hetero-epitaxy of high quality germanium film on silicon substrate for optoelectronic integrated circuit applications

Published online by Cambridge University Press:  04 September 2017

Kwang Hong Lee*
Affiliation:
Low Energy Electronic Systems (LEES), Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602, Singapore
Shuyu Bao
Affiliation:
Low Energy Electronic Systems (LEES), Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602, Singapore; and School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
Yiding Lin
Affiliation:
Low Energy Electronic Systems (LEES), Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602, Singapore; and School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
Wei Li
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
P Anantha
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
Lin Zhang
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
Yue Wang*
Affiliation:
Low Energy Electronic Systems (LEES), Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602, Singapore
Jurgen Michel
Affiliation:
Low Energy Electronic Systems (LEES), Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602, Singapore; and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Eugene A. Fitzgerald
Affiliation:
Low Energy Electronic Systems (LEES), Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602, Singapore; and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Chuan Seng Tan*
Affiliation:
Low Energy Electronic Systems (LEES), Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602, Singapore; and School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
*
a) Address all correspondence to these authors. e-mail: kwanghong@smart.mit.edu
b) e-mail: tancs@ntu.edu.sg
Get access

Abstract

Integration of photonic devices on silicon (Si) substrates is a key method in enabling large scale manufacturing of Si-based photonic–electronic circuits for next generation systems with high performance, small form factor, low power consumption, and low cost. Germanium (Ge) is a promising material due to its pseudo-direct bandgap and its compatibility with Si-CMOS processing. In this article, we present our recent progress on achieving high quality germanium-on-silicon (Ge/Si) materials. Subsequently, the performance of various functional devices such as photodetectors, lasers, waveguides, and sensors that are fabricated on the Ge/Si platform are discussed. Some possible future works such as the incorporation of tin (Sn) into Ge will be proposed. Finally, some applications based on a fully monolithic integrated photonic–electronic chip on an Si platform will be highlighted at the end of this article.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Mmantsae Diale

References

REFERENCES

Sze, S.M. and Lee, M.K.: Semiconductor Devices: Physics and Technology, 3rd ed. (Wiley, New York, USA, 2012).Google Scholar
Semiconductor Industry Association (2013). Available at: http://www.semiconductors.org (accessed 5 February 2017). Google Scholar
World Semiconductor Trade Statistic (2013). Available at: http//www.wsts.org (accessed 5 February 2017).Google Scholar
International Technology Roadmap for Semiconductors (2012). Available at: http://www/itrs.net. Google Scholar
Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8), 114 (1965).Google Scholar
Greiling, P.: The historical development of GaAs FET digital IC technology. IEEE Trans. Microwave Theory Tech. 32(9), 1144 (1984).Google Scholar
Hirayama, M., Togashi, M., Kato, N., Suzuki, M., Matsuoka, Y., and Kawasaki, Y.: A GaAs 16-kbit static RAM using dislocation-free crystal. IEEE Trans. Electron Devices 33(1), 104 (1986).Google Scholar
Taur, Y. and Ning, T.H.: Fundamentals of Modern VLSI Devices, 2nd ed. (Cambridge University Press, Cambridge, England, 2013).Google Scholar
Cisco Visual Networking Index: Forecast and Methodology (2013). Available at: http://www/cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf (accessed 5 February 2017).Google Scholar
Lannoo, B.: Overview of ICT energy consumption. Available at: http://www.internet-science.eu/sites/eins/files/biblio/EINS_D8%201_final.pdf (accessed 5 February 2017).Google Scholar
Klein, T.E.: Sustainable ICT Networks: The GreenTouch Vision. Green Research at Alcatel-Lucent. Available at: https://s3-us-west-2.amazonaws.com/belllabs-microsite-greentouch/uploads/documents/3%20Thierry%20Klein_EU%20SEW%20-%20The%20GT%20Vision%20-%20v2.pdf (accessed 5 February 2017).Google Scholar
Kimerling, L.C.: Microphotonics: The Next Platform for the Information Age. Available at: http://ilp.mit.edu/media/conferences/2011-japan/Kimerling.pdf (accessed 5 February 2017).Google Scholar
Soref, R.A.: The past, present and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12(6), 1678 (2006).CrossRefGoogle Scholar
Kirchain, R. and Kimerling, L.C.: A roadmap for nanophotonics. Nat. Photonics 1, 303 (2007).Google Scholar
Tsybeskov, L., Lockwood, D.J., and Ichikawa, M.: Silicon photonics: CMOS going optical. Proc. IEEE 97(7), 1161 (2009).CrossRefGoogle Scholar
Geis, M.W., Spector, S.J., Grein, M.E., Yoon, J.U., Lennon, D.M., and Lyszczarz, T.M.: Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response. Opt. Express 17(7), 5193 (2009).Google Scholar
Souhan, B., Grote, R.R., Driscoll, J.B., Lu, M., Stein, A., Bakhru, H., and Osgood, R.M.: Metal-semiconductor-metal ion-implanted Si waveguide photodetectors for C-band operation. Opt. Express 22(8), 9150 (2014).Google Scholar
Liu, A., Liao, L., Rubin, D., Nguyen, H., Ciftciogulu, B., Chetrit, Y., Izhaky, N., and Paniccia, M.: High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 15(2), 660 (2007).Google Scholar
Green, W.M.J., Rooks, M.J., Sekaric, L., and Vlasov, Y.A.: Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator. Opt. Express 15(25), 17106 (2007).Google Scholar
Cheng, K.Y., Anthony, R., Kortshagen, U.R., and Holmes, R.J.: High-efficiency silicon nanocrystal light-emitting devices. Nano Lett. 11(5), 1952 (2011).Google Scholar
Zimmermann, H.: Integrated Silicon Optoelectronics, 2nd ed. (Springer-Verlag, Berlin, Germany, 2000).CrossRefGoogle Scholar
Reed, G.T.: Silicon Photonics: The State of the Art, 1st ed. (Wiley, New York, USA, 2008).Google Scholar
Pavesi, L. and Guillot, G.: Optical Interconnects: The Silicon Approach, 1st ed. (Springer-Verlag, Berlin, Germany, 2006).CrossRefGoogle Scholar
Miller, D.A.B.: Device requirements for optical interconnects to silicon chips. Proc. IEEE 97(7), 1166 (2009).CrossRefGoogle Scholar
Vivien, L. and Pavesi, L.: Handbook of Silicon Photonics, 1st ed. (Taylor and Francis, London, England, 2013).Google Scholar
Arakawa, Y., Nakamura, T., and Urino, Y.: Silicon photonics for next generation system integration platform. IEEE Commun. Mag. 51(3), 72 (2013).CrossRefGoogle Scholar
Lee, A., Liu, H., and Seeds, A.: Semiconductor III–V lasers monolithically grown on Si substrates. Semicond. Sci. Technol. 28(1), 015207 (2013).Google Scholar
Gunn, C.: CMOS photonics for high-speed interconnects. IEEE Micro 26(2), 58 (2006).Google Scholar
Lee, K.H., Bao, S., Fitzgerald, E., and Tan, C.S.: Integration of III–V materials and Si-CMOS through double layer transfer process. Jpn. J. Appl. Phys. 54(3), 030209 (2015).Google Scholar
Lee, K.H., Bao, S., Zhang, L., Kohen, D., Fitzgerald, E., and Tan, C.S.: Integration of GaAs, GaN, and Si-CMOS on a common 200 mm Si substrate through multilayer transfer process. Appl. Phys. Express 9(8), 086501 (2016).Google Scholar
Wada, K. and Kimerling, L.C.: Photonics and Electronics with Germanium, 1st ed. (Wiley, Verlag GmbH & Co. KGaA, Germany, 2015).Google Scholar
Newman, R.: Optical studies of injected carriers. II. Recombination radiation in germanium. Phys. Rev. 91(6), 1313 (1953).Google Scholar
Hayne, J.R.: New radiation resulting from recombination of holes and electrons in germanium. Phys. Rev. 98(6), 1866 (1955).Google Scholar
Zhang, Q., Huang, J., Wu, N., Chen, G., Hong, M., Bera, L.K., and Zhu, C.: Drive-current enhancement in Ge n-channel MOSFET using laser annealing for source/drain activation. IEEE Electron Device Lett. 27(9), 728 (2006).Google Scholar
Feng, J., Woo, R., Chen, S., Liu, Y., Griffin, P.B., and Plummer, J.D.: P-Channel germanium FinFET based on rapid melt growth. IEEE Electron Device Lett. 28(7), 637 (2007).Google Scholar
Feng, J., Thareja, G., Kobayashi, M., Chen, S., Poon, A., Bai, Y., Griffin, P.B., Wong, S.S., Nishi, Y., and Plummer, J.D.: High-performance gate-all-around GeOI p-MOSFETs fabricated by rapid melt growth using plasma nitridation and ALD Al2O3 gate dielectric and self-aligned NiGe contacts. IEEE Electron Device Lett. 29(7), 805 (2008).Google Scholar
Madelung, O.: Physics of Group IV Elements and III–V Compounds, 1st ed. (Springer-Verlag, Berlin, Germany, 1982).Google Scholar
Liu, J., Sun, X., Kimerling, L.C., and Michel, J.: Direct-gap optical gain of Ge on Si at room temperature. Opt. Lett. 34(11), 1738 (2009).CrossRefGoogle ScholarPubMed
Camacho-Aguilera, R.E., Cai, Y., Patel, N., Bessette, J.T., Romagnoli, M., Kimerling, L.C., and Michel, J.: An electrically pumped germanium laser. Opt. Express 20(10), 11316 (2012).Google Scholar
Koerner, R., Oehme, M., Gollhofer, M., Schmid, M., Kostecki, K., Bechler, S., Widmann, D., Kasper, E., and Schulze, J.: Electrically pumped lasing from Ge Fabry–Perot resonators on Si. Opt. Express 23(11), 14815 (2015).CrossRefGoogle ScholarPubMed
Komiyama, S., Lizuka, N., and Akasaka, Y.: Evidence for induced far-infrared emission from p-Ge in crossed electric and magnetic fields. Appl. Phys. Lett. 47(9), 958 (2016).Google Scholar
Shang, H., Okorn-schimdt, H., Ott, J., Kozlowski, P., Steen, S., Jones, E.C., Wong, H.S.P., and Hanesch, W.: Electrical characterization of germanium p-channel MOSFETs. IEEE Electron. Dev. Lett. 24(4), 242 (2003).CrossRefGoogle Scholar
Fathpour, S.: Emerging heterogeneous integrated photonic platforms on silicon. Nanophotonics 4(1), 143 (2015).Google Scholar
Kohen, D., Bao, S., Lee, K.H., Lee, K.E.K., Tan, C.S., Yoon, S.F., and Fitzgerald, E.A.: The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD—Application to a 200 mm GaAs virtual substrate. J. Cryst. Growth 421, 58 (2015).CrossRefGoogle Scholar
Kohen, D., Nguyen, X.S., Yadav, S., Kumar, A., Made, R.I., Heidelberger, C., Gong, X., Lee, K.H., Lee, K.E.K., Yeo, Y.C., Yoon, S.F., and Fitzgerald, E.A.: Heteroepitaxial growth of In0.30Ga0.70As high-electron mobility transistor on 200 mm silicon substrate using metamorphic graded buffer. AIP Adv. 6(8), 085106 (2016).CrossRefGoogle Scholar
Fitzgerald, E.A., Xie, Y.H., Green, M.L., Brasen, D., Kortan, A.R., Michel, J., Mi, Y.J., and Weir, B.E.: Totally relaxed Ge x Si1−x layers with low threading dislocation densities grown on Si substrates. Appl. Phys. Lett. 59(7), 811 (2010).Google Scholar
Shah, V.A., Dobbie, A., Myronov, M., and Leadley, D.R.: Reverse graded SiGe/Ge/Si buffers for high-composition virtual substrates. Appl. Phys. Lett. 107(6), 064304 (2010).Google Scholar
Curie, M.T., Samvedam, S.B., Langdo, T.A., Leitz, C.W., and Fitzgerald, E.A.: Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl. Phys. Lett. 72, 1718 (1998).Google Scholar
Liu, J.L., Tong, S., Luo, Y.H., and Wang, K.L.: High-quality Ge films on Si substrates using Sb surfactant-mediated graded SiGe buffers. Appl. Phys. Lett. 79(21), 3431 (2001).CrossRefGoogle Scholar
Luryi, S., Kastalsky, A., and Bean, J.C.: Infrared detector on a silicon chip. IEEE Trans. Electron Devices 31(9), 1135 (1984).Google Scholar
Curie, M.T., Samvedam, S.B., Langdo, T.A., Leitz, C.W., and Fitzgerald, E.A.: Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl. Phys. Lett. 72(14), 1718 (1998).Google Scholar
Hartmann, J.M., Sanchez, L., Van Den Daele, W., Abbadie, A., Baud, L., Truche, R., Augendre, E., Clavelier, L., Cherkashin, N., Hytch, M., and Cristoloveanu, S.: Fabrication, structural and electrical properties of compressively strained Ge-on-insulator substrates. Semicond. Sci. Technol. 25(7), 075010 (2010).Google Scholar
Jain, N.: Heterogeneous integration of III–V multijunction solar cells on Si substrate: Cell design & modeling, epitaxial growth & fabrication. Doctoral thesis, Virginia Polytechnic Institute and State University, USA, 2015.Google Scholar
Nakatsuru, J., Date, H., Mashiro, S., and Ikemoto, M.: Growth of high quality Ge epitaxial layer on Si (100) substrate using ultra thin Si0.5Ge0.5 buffer. MRS Online Proc. Libr. 891, EE07-24 (2005).Google Scholar
Langdo, T.A., Leitz, C.W., Curie, M.T., and Fitzgerald, E.A.: High quality Ge on Si by epitaxial necking. Appl. Phys. Lett. 76(25), 3700 (2000).Google Scholar
Bai, J., Park, J.S., Cheng, Z., Curtin, M., Adekore, B., Carroll, M., and Lochtefeld, A.: Study of the defect elimination mechanisms in aspect ratio trapping Ge growth. Appl. Phys. Lett. 90(10), 101902 (2007).Google Scholar
Ren, S., Rong, Y., Kamins, T.I., Harris, J.S., and Miller, D.A.B.: Selective epitaxial growth of Ge/Si0.15Ge0.85 quantum wells on Si substrate using reduced pressure chemical vapor deposition. Appl. Phys. Lett. 98(15), 151108 (2011).Google Scholar
Fiorenza, J.G., Park, J.S., Hydrick, J.M., Li, J., Li, J.Z., Curtin, M., Carroll, M., and Lochtefeld, A.: Aspect ratio trapping: A unique technology for integrating Ge and III–Vs with silicon CMOS. ECS Trans. 33(6), 963 (2010).Google Scholar
Colace, L., Masini, G., Galluzzi, F., Assanto, G., Capellini, G., Gaspare, L.D., Palange, E., and Evangelisti, F.: Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si. Appl. Phys. Lett. 72(24), 3175 (1998).Google Scholar
Hartmann, J.M., Abbadie, A., Papon, A.M., Holliger, P., Rolland, G., Billon, T., Fedeli, J.M., Rouviere, M., Vivien, L., and Laval, S.: Reduced pressure–chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection. J. Appl. Phys. 95(10), 5905 (2004).Google Scholar
Luan, H.C., Lim, D.R., Lee, K.K., Cheng, K.M., Sandland, J.G., Wada, K., and Kimerling, L.C.: High-quality Ge epilayers on Si with low threading-dislocation densities. Appl. Phys. Lett. 75(19), 2909 (1999).Google Scholar
Nayfeh, A., Chui, C.O., and Saraswat, K.C.: Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality. Appl. Phys. Lett. 85(14), 2815 (2004).Google Scholar
Tan, Y.H. and Tan, C.S.: Growth and characterization of germanium epitaxial film on silicon (001) using reduced pressure chemical vapor deposition. Thin Solid Films 520(7), 2711 (2012).Google Scholar
Lee, K.H., Tan, Y.H., Jandl, A., Fitzgerald, E.A., and Tan, C.S.: Comparative studies of the growth and characterization of germanium epitaxial film on silicon (001) with 0° and 6° offcut. J. Electron. Mater. 42(6), 1133 (2013).Google Scholar
Lee, K.H., Jandl, A., Tan, Y.H., Fitzgerald, E.A., and Tan, C.S.: Growth and characterization of germanium epitaxial film on silicon (001) with germane precursor in metal organic chemical vapour deposition (MOCVD) chamber. AIP Adv. 3(9), 092123 (2013).Google Scholar
Masafumi, Y., Chikara, A., and Yoshio, I.: Numerical analysis for high-efficiency GaAs solar cells fabricated on Si substrates. J. Appl. Phys. 66(2), 915 (1989).Google Scholar
Masafumi, Y. and Chikara, A.: Efficiency calculations of thin-film GaAs solar cells on Si substrates. J. Appl. Phys. 58(9), 3601 (1985).Google Scholar
Ginige, R., Corbett, B., Modreanu, M., Barrett, C., Hilgarth, J., Isella, G., Chrastina, D., and von Känel, H.: Characterization of Ge-on-Si virtual substrates and single junction GaAs solar cells. Semicond. Sci. Technol. 21(6), 775780 (2006).Google Scholar
Lee, K.H., Bao, S., Chong, G.Y., Tan, Y.H., Fitzgerald, E.A., and Tan, C.S.: Fabrication and characterization of germanium-on-insulator through epitaxy, bonding, and layer transfer. J. Appl. Phys. 116(10), 103506 (2014).Google Scholar
Lee, K.H., Bao, S., Chong, G.Y., Tan, Y.H., Fitzgerald, E.A., and Tan, C.S.: Defects reduction of Ge epitaxial film in a germanium-on-insulator wafer by annealing in oxygen ambient. APL Mater. 3(1), 016102 (2015).Google Scholar
Lee, K.H., Bao, S., Wang, B., Wang, C., Yoon, S.F., Michel, J., Fitzgerald, E.A., and Tan, C.S.: Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer. AIP Adv. 6(2), 025028 (2016).Google Scholar
Cai, F., Dong, Y., Tan, Y.H., Tan, C.S., and Xia, G.: Enhanced Si–Ge interdiffusion in high phosphorus-doped germanium on silicon. Semicond. Sci. Technol. 30(10), 105008 (2015).Google Scholar
Jung, K.H., Hsieh, T.Y., Kwong, D.L., Liu, H.Y., and Brennan, R.: In situ doping of Ge x Si1−x with arsenic by rapid thermal processing chemical vapor deposition. Appl. Phys. Lett. 60(6), 724 (1992).Google Scholar
Huang, Z., Oh, J., Banerjee, S.K., and Campbell, J.C.: Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors. IEEE J. Quantum Electron. 43(3), 238 (2007).Google Scholar
DiLello, N.A., Johnstone, D.K., and Hoyt, J.L.: Characterization of dark current in Ge-on-Si photodiodes. J. Appl. Phys. 112(5), 054506 (2012).Google Scholar
Liu, J., Michel, J., Giziewicz, W., Pan, D., Wada, K., Cannon, D.D., Jongthammanurak, S., Danielson, D.T., Kimerling, L.C., Chen, J., Llday, F.O., Kartner, F.X., and Yasaitis, J.: High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform. Appl. Phys. Lett. 87(10), 103501 (2005).Google Scholar
Liu, J., Cannon, D.D., Wada, K., Ishikawa, Y., Jongthammanurak, S., Danielson, D.T., Michel, J., and Kimerling, L.C.: Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications. Appl. Phys. Lett. 87(1), 011110 (2005).Google Scholar
Dehlinger, G., Koester, S.J., Schaub, J.D., Chu, J.O., Quyang, Q.C., and Grill, A.: High-speed germanium-on-SOI lateral PIN photodiodes. IEEE Photon. Technol. Lett. 16(11), 2547 (2004).Google Scholar
Ahn, D., Hong, C.Y., Liu, J., Giziewicz, W., Beals, M., Kimerling, L.C., Michel, J., Chen, J., and Kartner, F.Z.: High performance, waveguide integrated Ge photodetectors. Opt. Express 15(7), 3916 (2007).Google Scholar
Vivien, L., Osmond, J., Fedeli, J-M., Marris-Morini, D., Crozat, P., Damlencourt, J-F., Cassan, E., Lecunff, Y., and Laval, S.: 42 GHz pin Ge photodetector integrated on SOI waveguide. Opt. Express 17(8), 6252 (2009).Google Scholar
Feng, D., Liao, S., Dong, P., Feng, N.N., Liang, H., Zheng, D., Kung, C., Fong, J., Shafiiha, R., Cunningham, J., Krishnamoorthy, A.V., and Asghari, M.: High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide. Appl. Phys. Lett. 95(26), 261105 (2009).Google Scholar
Virot, L., Vivien, L., Fédéli, J-M., Bogumilowicz, Y., Hartmann, J-M., Bœuf, F., Crozat, P., Marris-Morini, D., and Cassan, E.: High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications. Photonics Res. 1(3), 140 (2013).Google Scholar
Yin, T., Cohen, R., Morse, M.M., Sarid, G., Chetrit, Y., Rubin, D., and Paniccia, M.J.: 31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate. Opt. Express 15(21), 13965 (2007).Google Scholar
Vivien, L., Polzer, A., Marris-Morini, D., Osmond, J., Hartmann, J.M., Crozat, P., Cassan, E., Kopp, C., Zimmermann, H., and Fédéli, J.M.: Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt. Express 20(2), 1096 (2012).Google Scholar
Wang, J., Loh, W.Y., Chua, K.T., Zang, H., Xiong, Y.Z., Loh, T.H., Yu, M.B., Lee, S.J., Lo, G.Q., and Kwong, D.L.: Evanescent-coupled Ge p-i-n photodetectors on Si-waveguide with SEG-Ge and comparative study of lateral and vertical p-i-n configurations. IEEE Electron Device Lett. 29(5), 445 (2008).Google Scholar
Colace, L., Balbi, M., Masini, G., Assanto, G., Luan, H-C., and Kimerling, L.C.: Ge on Si p-i-n photodiodes operating at 10 Gbit/s. Appl. Phys. Lett. 88(10), 101111 (2006).Google Scholar
Suh, D., Kim, S., Joo, J., and Kim, G.: 36-GHz high-responsivity Ge photodetectors grown by RPCVD. IEEE Photon. Technol. Lett. 21(10), 672 (2009).Google Scholar
Colace, L., Masini, G., Assanto, G., Luan, H., Wada, K., and Kimerling, L.C.: Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates. Appl. Phys. Lett. 76(10), 1231 (2000).Google Scholar
Klinger, M.B.S., Kaschel, M., Oehme, M., and Kasper, E.: Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz. IEEE Photon. Technol. Lett. 21(13), 920 (2009).Google Scholar
Zhou, Z., He, J., Wang, R., Li, C., and Yu, J.: Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition. Opt. Commun. 283(18), 3404 (2010).Google Scholar
Li, C., Xue, C., Liu, Z., Cheng, B., Li, C., and Wang, Q.: High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection. IEEE Trans. Electron Devices 60(3), 1183 (2013).Google Scholar
Jalali, B. and Fathpour, S.: Silicon photonics. J. Lightwave Technol. 24(12), 4600 (2006).Google Scholar
Liu, J.F., Sun, X., Pan, D., Wang, X.X., Kimerling, L.C., Koch, T.L., and Michel, J.: Tensile-strained n-type Ge as a gain medium for monolithic laser integration on Si. Opt. Express 15(18), 11272 (2007).Google Scholar
Soref, R.A. and Friedman, L.: Direct gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures. Superlattices Microstruct. 14(2), 189 (1993).Google Scholar
El Kurdi, M., Fishman, G., Sauvage, S., and Boucaud, P.: Band structure and optical gain of tensile-strained germanium based on a 30 band k·p formalism. J. Appl. Phys. 107(1), 013710 (2010).Google Scholar
Reboud, V., Gassenq, A., Hartmann, J.M., Widiez, J., Virot, L., Aubin, J., Guilloy, K., Tardif, S., Fédéli, J.M., Pauc, N., Chelnokov, A., and Calvo, V.: Germanium based photonic components toward a full silicon/germanium photonic platform. Prog. Cryst. Growth Charact. Mater. 63(2), 1 (2017).Google Scholar
Nam, D., Sukhdeo, D.S., Kang, J-H., Petykiewicz, J., Lee, J.H., Jung, W.S., Vučković, J., Brongersma, M.L., and Saraswat, K.C.: Strain-induced pseudoheterostructure nanowires confining carriers at room temperature with nanoscale-tunable band profiles. Nano Lett. 13(7), 3118 (2013).Google Scholar
Zabel, T., Marin, E., Geiger, R., Bozon, C., Tardif, S., Guilloy, K., Gassenq, A., Escalante, J., Niquet, Y.M., Duchemin, I., Rothman, J., Pauc, N., Rieutord, F., Reboud, V., Calvo, V., Hartmann, J.M., Widiez, J., Tchelnokov, A., Faist, J., and Sigg, H.: Highly strained direct bandgap germanium cavities for a monolithic laser on Si. Presented at the IEEE International Conference on Group IV Photonics GFP 7739082, IEEE, Shanghai, China, 2016.Google Scholar
Gassenq, A., Tardif, S., Guilloy, K., Duchemin, I., Pauc, N., Hartmann, J.M., Rouchon, D., Widiez, J., Niquet, Y.M., Milord, L., Zabel, T., Sigg, H., Faist, J., Chelnokov, A., Rieutord, F., Reboud, V., and Calvo, V.: Raman-strain relations in highly strained Ge: Uniaxial 〈100〉, 〈110〉 and biaxial (001) stress. J. Appl. Phys. 121(5), 055702 (2017).Google Scholar
Kang, J., Takenaka, M., and Takagi, S.: Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits. Opt. Express 24(11), 11855 (2016).Google Scholar
Soref, R.A., Emelett, S.J., and Buchwald, W.R.: Silicon waveguided components for the long-wave infrared region. J. Opt. A: Pure Appl. Opt. 8(10), 840 (2006).Google Scholar
Nedeljkovic, M., Penadés, J.S., Mitchell, C.J., Khokhar, A.Z., Stanković, S., Bucio, T.D., Littlejohns, C.G., Gardes, F.Y., and Mashanovich, G.Z.: Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers. IEEE Photon. Technol. Lett. 27(10), 1040 (2015).Google Scholar
Yalcin, A., Popat, K.C., Aldridge, J.C., Desai, T.A., Hryniewicz, J., Chbouki, N., Little, B.E., King, O., Van, V., and Chu, S.: Optical sensing of biomolecules using microring resonator. IEEE J. Sel. Top. Quantum Electron. 12(1), 148 (2006).Google Scholar
Xu, Q., Fattal, D., and Beausoleil, R.G.: Silicon microring resonators with 1.5-µm radius. Opt. Express 16(6), 4309 (2008).Google Scholar
Vlasov, Y. and McNab, S.: Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12(8), 1622 (2004).Google Scholar
Li, G., Yao, J., Thacker, H., Mekis, A., Zheng, X., Shubin, I., Luo, Y., Lee, J-H., Raj, K., and Cunningham, J.E.: Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects. Opt. Express 20(11), 12035 (2012).Google Scholar
Soref, R.: Mid-infrared photonics in silicon and germanium. Nat. Photonics 4(8), 495 (2010).Google Scholar
Lavchiev, V.M. and Jakoby, B.: Photonics in the mid-infrared: Challenges in single-chip integration and absorption sensing. IEEE J. Sel. Top. Quantum Electron. 23(2), 1 (2017).Google Scholar
Sieger, M. and Mizaikoff, B.: Toward on-chip mid-infrared sensors. Anal. Chem. 88(11), 5562 (2016).Google Scholar
Sieger, M., Balluff, F., Wang, X., Kim, S-S., Leidner, L., Gauglitz, G., and Mizaikoff, B.: On-chip integrated mid-infrared GaAs/AlGaAs Mach–Zehnder interferometer. Anal. Chem. 85(6), 3050 (2013).Google Scholar
Chang, Y-C., Wägli, P., Paeder, V., Homsy, A., Hvozdara, L., van der Wal, P., Di Francesco, J., de Rooij, N.F., and Peter Herzig, H.: Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip. Lab Chip 12(17), 3020 (2012).CrossRefGoogle ScholarPubMed
Hu, J., Tarasov, V., Agarwal, A., Kimerling, L., Carlie, N., Petit, L., and Richardson, K.: Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. Opt. Express 15(5), 2307 (2007).Google Scholar
Coates, J.: Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry (John Wiley & Sons, 2006).Google Scholar
Li, W., Anantha, P., Bao, S., Lee, K.H., Guo, X., Hu, T., Zhang, L., Wang, H., Soref, R., and Tan, C.S.: Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics. Appl. Phys. Lett. 109(24), 241101 (2016).Google Scholar
Capellini, G., Kozlowski, G., Yamamoto, Y., Lisker, M., Wenger, C., Niu, G., Zaumseil, P., Tillack, B., Ghrib, A., Kersauson, M., Kurdi, M.E., Boucaud, P., and Schroeder, T.: Strain analysis in SiN/Ge microstructures obtained via Si-complementary metal oxide semiconductor compatible approach. J. Appl. Phys. 113(1), 013513 (2013).Google Scholar
Ghrib, A., Kurdi, M., Prost, M., Sauvage, S., Checoury, X., Beaudoin, G., Chaigneau, M., Ossikovski, R., Sagnes, I., and Boucaud, P.: All-around SiN stressor for high and homogeneous tensile strain in germanium microdisk cavities. Adv. Opt. Mater. 3(3), 353 (2015).Google Scholar
D’Costa, V.R., Cook, C.S., Birdwell, A.G., Littler, C.L., Canonico, M., Zollner, S., Kouvetakis, J., and Menéndez, J.: Optical critical points of thin-film Ge1−y Sn y alloys: A comparative Ge1−y Sn y /Ge1−x Si x study. Phys. Rev. B: Condens. Matter Mater. Phys. 73(12), 125207 (2006).Google Scholar
Chen, R., Lin, H., Huo, Y., Hitzman, C., Kamins, T.I., and Harris, J.S.: Increased photoluminescence of strain-reduced, high-Sn composition Ge1−x Sn x alloys grown by molecular beam epitaxy. Appl. Phys. Lett. 99(11), 181125 (2011).Google Scholar
Liu, J.: Monolithically integrated Ge-on-Si active photonics. Photonics 1(3), 162 (2014).Google Scholar
Wirths, S., Buca, D., and Mantl, S.: Si–Ge–Sn alloys: From growth to applications. Prog. Cryst. Growth Charact. Mater. 62(1), 1 (2016).Google Scholar
Wirths, S., Geiger, R., Driesch, N.V.D., Mussler, G., Stoica, T., Mantl, S., Ikonic, Z., Luysberg, M., Chiussi, S., Hartmann, J.M., Sigg, H., Faist, J., Buca, D., and Grutzmacher, D.: Lasing in direct-bandgap GeSn alloy grown on Si. Nat. Photon. Lett. 9, 88 (2015).CrossRefGoogle Scholar
Su, S., Cheng, B., Xue, C., Wang, W., Cao, Q., Xue, H., Hu, W., Zhang, G., Zuo, Y., and Wang, Q.: GeSn p-i-n photodetector for all telecommunication bands detection. Opt. Express 19(7), 6400 (2011).Google Scholar