Skip to main content Accessibility help
×
Home

Growth of TiO2 nanotube arrays in semiconductor porous anodic alumina templates

Published online by Cambridge University Press:  29 October 2014

A. Shoja
Affiliation:
Department of Physics, Faculty of Science, University of Isfahan, Isfahan 81746-73441, Iran
A. Nourmohammadi
Affiliation:
Department of Nanotechnology, Faculty of Advanced Science and Technologies, University of Isfahan, Isfahan 81746-73441, Iran
M.H. Feiz
Affiliation:
Department of Physics, Faculty of Science, University of Isfahan, Isfahan 81746-73441, Iran
Corresponding
Get access

Abstract

The aim of this research study is to produce high-quality TiO2 nanotube arrays using porous alumina templates. The templates are fabricated through anodizing bulk aluminum foils which can be utilized for the production of thick alumina templates. To produce the nanotube arrays, the alumina template pores are filled with the precursor sol by applying a DC electric field. Then, the deposited nanotubes are heat treated at 320 °C for 2 h and, subsequently, sintered for 2 h at 400 and 750 °C to obtain nanotubes with pure anatase and rutile phases, respectively, as confirmed by x-ray diffraction data. Scanning and transmission electron microscopy (SEM and TEM) investigations show that the nanotubes have been deposited in the channels of the nanoporous alumina template. Also, SEM investigations show the existence of a vast area of TiO2 nanotube arrays when we use semiconductor alumina templates.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

Park, J.H., Kim, S., and Bard, A.J.: Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24 (2006).CrossRefGoogle ScholarPubMed
Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., and Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011 (2006).CrossRefGoogle Scholar
Zhang, M., Bando, Y., and Wada, K.: Sol-gel template preparation of TiO2 nanotubes and nanorods. J. Mater. Sci. Lett. 20, 167 (2001).CrossRefGoogle Scholar
Roy, P., Berger, S., and Schmuki, P.: TiO2 nanotubes: Synthesis and applications. Angew. Chem., Int. Ed. 50, 2904 (2011).CrossRefGoogle ScholarPubMed
Li, S. and Zhang, G.: One-step realization of open-ended TiO2 nanotube arrays by transition of the anodizing voltage. J. Ceram. Soc. Jpn. 118, 291 (2010).CrossRefGoogle Scholar
Sreekantan, S., Saharudin, K.A., Lockman, Z., and Tzu, T.W.: Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis. Nanotechnology 21, 365603 (2010).CrossRefGoogle Scholar
Moon, S., Kim, B., Yang, C., and Jeong, Y.: Effect of bath type on the formation of TiO2 nanotubes in fluoride containing aqueous solution. J. Nanosci. Nanotech. 12, 1230 (2012).CrossRefGoogle ScholarPubMed
Wang, W., Varghese, O.K., Paulose, M., Grimes, C.A., Wang, Q., and Dickey, E.C.: A study on the growth and structure of titania nanotubes. J. Mater. Res. 19, 417 (2004).CrossRefGoogle Scholar
Kang, T-S., Smith, A.P., Taylor, B.E., and Durstock, M.F.: Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett. 9, 601 (2009).CrossRefGoogle Scholar
Ren, X., Gershon, T., Iza, D., Munoz-Rojas, D., Musselman, K., and MacManus-Driscoll, J.: The selective fabrication of large-area highly ordered TiO2 nanorod and nanotube arrays on conductive transparent substrates via sol–gel electrophoresis. Nanotechnology 20, 365604 (2009).CrossRefGoogle ScholarPubMed
Gong, D., Grimes, C., Varghese, O.K., Hu, W., Singh, R., Chen, Z., and Dickey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).CrossRefGoogle Scholar
Rani, S., Roy, S.C., Paulose, M., Varghese, O.K., Mor, G.K., Kim, S., Yoriya, S., LaTempa, T.J., and Grimes, C.: Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys. Chem. Chem. Phys. 12, 2780 (2010).CrossRefGoogle ScholarPubMed
Răileanu, M., Crişan, M., Drăgan, N., Crişan, D., Galtayries, A., Brăileanu, A., Ianculescu, A., Teodorescu, V.S., Niţoi, I., and Anastasescu, M.: Sol–gel doped TiO2 nanomaterials: A comparative study. J. Sol-gel. Sci. Technol. 51, 315 (2009).CrossRefGoogle Scholar
Aal, A.A., Mahmoud, S.A., and Aboul-Gheit, A.K.: Sol–gel and thermally evaporated nanostructured thin ZnO films for photocatalytic degradation of trichlorophenol. Nanoscale Res. Lett. 4, 627 (2009).Google ScholarPubMed
Grimes, C.A. and Mor, G.K.: TiO2 Nanotube Arrays: Synthesis, Properties, and Applications (Springer Science+Business Media, 2009).CrossRefGoogle Scholar
Limmer, S.J., Chou, T.P., and Cao, G.Z.: A study on the growth of TiO2 nanorods using sol electrophoresis. J. Mater. Sci. 39(3), 895 (2004).CrossRefGoogle Scholar
Li, A., Muller, F., Birner, A., Nielsch, K., and Gosele, U.: Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023 (1998).CrossRefGoogle Scholar
Ono, S., Saito, M., Ishiguro, M., and Asoh, H.: Controlling factor of self-ordering of anodic porous alumina. J. Electrochem. Soc. 151, B473 (2004).CrossRefGoogle Scholar
Anderson, C. and Bard, A.J.: An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis. J. Phys. Chem. 99, 9882 (1995).CrossRefGoogle Scholar
Nourmohammadi, A., Bahrevar, M.A., Schulze, S., and Hietschold, M.: Electrodeposition of lead zirconate titanate nanotubes. J. Mater. Sci. 43(14), 4753 (2008).CrossRefGoogle Scholar
Afanas' ev, V., Houssa, M., Stesmans, A., Merckling, C., Schram, T., and Kittl, J.: Influence of Al2O3 crystallization on band offsets at interfaces with Si and TiNx. Appl. Phys. Lett. 99(7), 072103 (2011).CrossRefGoogle Scholar
Fernandes, J., Picciochi, R., Da Cunha Belo, M., Moura e Silva, T., Ferreira, M., and Fonseca, I.: Capacitance and photoelectrochemical studies for the assessment of anodic oxide films on aluminium. Electrochim. Acta 49(26), 4701 (2004).CrossRefGoogle Scholar
Natishan, P. and O’Grady, W.: Chloride ion interactions with oxide-covered aluminum leading to pitting corrosion: A review. J. Electrochem. Soc. 161(9), C421 (2014).CrossRefGoogle Scholar
Nourmohammadi, A., Asadabadi, S.J., Yousefi, M.H., and Ghasemzadeh, M.: Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid. Nanoscale Res. Lett. 7(1), 1 (2012).CrossRefGoogle ScholarPubMed
Hung, C., Chiang, P., Yuan, C., and Chou, C.: Photocatalytic degradation of azo dye in TiO2 suspended solution. Water Sci. Technol. 43, 313 (2001).CrossRefGoogle ScholarPubMed
Vinodgopal, K., Bedja, I., and Kamat, P.V.: Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye. Chem. Mater. 8, 2180 (1996).CrossRefGoogle Scholar
Liu, G., Wu, T., Zhao, J., Hidaka, H., and Serpone, N.: Photoassisted degradation of dye pollutants. 8. Irreversible degradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO2 dispersions. Environ. Sci. Technol. 33, 2081 (1999).CrossRefGoogle Scholar
Li, W., Shah, S.I., Sung, M., and Huang, C-P.: Structure and size distribution of TiO2 nanoparticles deposited on stainless steel mesh. J. Vac. Sci. Technol., B 20, 2303 (2002).CrossRefGoogle Scholar
Kiyoung, L.: Anodic Growth of Porous Metal Oxides and their Applications (Technische Fakultät, 2013), p. 144.Google Scholar
Bhattacharya, P., Mahajan, S., and Kamimura, H.: Comprehensive Semiconductor Science and Technology: Online Version (Newnes, 2011).Google Scholar
Nourmohammadi, A., Bahrevar, M., and Hietschold, M.: Template-based electrophoretic deposition of perovskite PZT nanotubes. J. Alloys Compd. 473(1), 467 (2009).CrossRefGoogle Scholar
Lanki, M., Nourmohammadi, A., and Feiz, M.: Electrophoretic growth of PbTiO3 nanotubes. Ferroelectrics 448(1), 134 (2013).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 10
Total number of PDF views: 49 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 15th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-w9qs9 Total loading time: 0.301 Render date: 2021-01-15T21:49:58.232Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Fri Jan 15 2021 20:58:56 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Growth of TiO2 nanotube arrays in semiconductor porous anodic alumina templates
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Growth of TiO2 nanotube arrays in semiconductor porous anodic alumina templates
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Growth of TiO2 nanotube arrays in semiconductor porous anodic alumina templates
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *