Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-05T14:27:48.343Z Has data issue: false hasContentIssue false

Gas phase equilibrium limitations on the vapor–liquid–solid growth of epitaxial silicon nanowires using SiCl4

Published online by Cambridge University Press:  04 July 2011

Sarah M. Eichfeld
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Haoting Shen
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Chad M. Eichfeld
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Suzanne E. Mohney
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802; and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Elizabeth C. Dickey
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802; and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Joan M. Redwing*
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802; and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
*
a)Address all correspondence to this author. e-mail: jmr31@psu.edu
Get access

Abstract

Epitaxially oriented silicon nanowires (SiNWs) were grown on (111) Si substrates by the vapor–liquid–solid technique in an atmospheric-pressure chemical vapor deposition (APCVD) system using Au as the catalyst and SiCl4 as the source gas. The dependencies of SiNW growth rate on the growth temperature and SiCl4 partial pressure (PSiCl4) were investigated, and the experimental results were compared with calculated supersaturation curves for Si obtained from a gas phase equilibrium model of the SiCl4–H2 system. The SiNW growth rate was found to be weakly dependent on temperature but strongly dependent on the PSiCl4, exhibiting a maximum value qualitatively similar to that predicted from the equilibrium model. The results indicate that SiNW growth from SiCl4 is limited by gas phase chemistry and transport of reactant species to the growth surface under APCVD conditions. The experimental results are discussed within the context of a gas phase mass transport model that takes into account changes in equilibrium partial pressure due to curvature-related Gibbs–Thomson effects.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer tohttp://www.mrs.org/jmr_editor-manuscripts/

References

REFERENCES

1.Wagner, R.S. and Ellis, W.C.: Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89 (1964).CrossRefGoogle Scholar
2.Wagner, R.S. and Doherty, C.J.: Controlled vapor–liquid–solid growth of silicon crystals. J. Electrochem. Soc. 113(12), 1300 (1966).CrossRefGoogle Scholar
3.James, D.W.F. and Lewis, C.: Silicon whisker growth and epitaxy by vapor–liquid–solid mechanism. Br. J. Appl. Phys. 16(8), 1089 (1965).CrossRefGoogle Scholar
4.Givargizov, E.I.: Fundamental aspects of VLS growth. J. Cryst. Growth. 31, 20 (1975).CrossRefGoogle Scholar
5.Goodey, A.P., Eichfeld, S.M., Lew, K.K., Redwing, J.M., and Mallouk, T.E.: Silicon nanowire photoelectrochemical cells. J. Am. Chem. Soc. 129(41), 12344 (2007).CrossRefGoogle Scholar
6.Kelzenberg, M.D., Turner-Evans, D.B., Kayes, B.M., Filler, M.A., Putnam, M.C., Lewis, N.S., and Atwater, H.A.: Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 8(2), 710 (2008).CrossRefGoogle ScholarPubMed
7.Tian, B.Z., Zhang, X.L., Kempa, T.J., Fang, Y., Yu, N.F., Yu, G.H., Huang, J.L., and Lieber, C.M.: Coaxial silicon nanowires as solar cell and nanoelectronic power sources. Nature 449(7164), 885 (2007).CrossRefGoogle ScholarPubMed
8.Garnett, E.C. and Yang, P.D.: Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 130(29), 9224 (2008).CrossRefGoogle Scholar
9.Goldberger, J., Hochbaum, A.I., Fan, R., and Yang, P.D.: Silicon vertically integrated nanowire field effect transistors. Nano Lett. 6(5), 973 (2006).CrossRefGoogle Scholar
10.Hochbaum, A.I., Fan, R., He, R.R., and Yang, P.D.: Controlled growth of silicon nanowire arrays for device integration. Nano Lett. 5(3), 457 (2005).CrossRefGoogle ScholarPubMed
11.Sharma, S., Kamins, T.I., and Williams, R.S.: Synthesis of thin silicon nanowires using gold-catalyzed chemical vapor deposition. Appl. Phys. A Mater. Sci. Process. 80(6), 1225 (2005).CrossRefGoogle Scholar
12.Kayes, B.M., Filler, M.A., Putnam, M.C., Kelzenberg, M.D., Lewis, N.S., and Atwater, H.A.: Growth of vertically aligned Si wire arrays over large areas (>1 cm2) with Au and Cu catalysts. Appl. Phys. Lett. 91(10), 103110 (2007).CrossRefGoogle Scholar
13.Kendrick, C.E., Yoon, H.P., Yuwen, Y.A., Barber, G.D., Shen, H.T., Mallouk, T.E., Dickey, E.C., Mayer, T.S., and Redwing, J.M.: Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor–liquid–solid growth. Appl. Phys. Lett. 97(14), 143108 (2010).CrossRefGoogle Scholar
14.Jeong, H., Park, T.E., Seong, H.K., Kim, M., Kim, U., and Choi, H.J.: Growth kinetics of silicon nanowires by platinum assisted vapour–liquid–solid mechanism. Chem. Phys. Lett. 467(4–6), 331 (2009).CrossRefGoogle Scholar
15.Weyher, J.: Some notes on growth kinetics and morphology of VLS silicon-crystals grown with platinum and gold as liquid-forming agents. J. Cryst. Growth 43(2), 235 (1978).CrossRefGoogle Scholar
16.Mao, A., Ng, H.T., Nguyen, P., McNeil, M., and Meyyappan, M.J.: Silicon nanowire synthesis by a vapor–liquid–solid approach. J. Nanosci. Nanotechnol. 5(5), 831 (2005).CrossRefGoogle ScholarPubMed
17.Zhang, Y.J., Zhang, Q., Wang, N.L., Yan, Y.J., Zhou, H.H., and Zhu, J.: Synthesis of thin Si whiskers (nanowires) using SiCl4. J. Cryst. Growth 226(2/3), 185 (2001).CrossRefGoogle Scholar
18.Schmidt, V., Senz, S., and Gosele, U.: Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor–liquid–solid mechanism. Phys. Rev. B 75(4), 045335 (2007).CrossRefGoogle Scholar
19.Theuerer, H.C.: Epitaxial silicon films by the hydrogen reduction of SiCl4. J. Electrochem. Soc. 108(7), 649 (1961).CrossRefGoogle Scholar
20.Bloem, J., Oei, Y.S., Demoor, H.H.C., Hanssen, J.H.L., and Giling, L.J.: Epitaxial growth of silicon by CVD in a hot-wall furnace. J. Electrochem. Soc. 132(8), 1973 (1985).CrossRefGoogle Scholar
21.Hunt, L.P. and Sirtl, E.: Thorough thermodynamic evaluation of silicon–hydrogen–chlorine system. J. Electrochem. Soc. 119(12), 1741 (1972).CrossRefGoogle Scholar
22.Sirtl, E., Hunt, L.P., and Sawyer, D.H.: High-temperature reactions in silicon–hydrogen–chlorine system. J. Electrochem. Soc. 121(7), 919 (1974).Google Scholar
23.Bylander, E.G.: Kinetics of silicon crystal growth from SiCl4 decomposition. J. Electrochem. Soc. 109(12), 1171 (1962).CrossRefGoogle Scholar
24.Bloem, J., Oei, Y.S., Demoor, H.H.C., Hanssen, J.H.L., and Giling, L.J.: Near equilibrium growth of silicon by CVD I. The Si–Cl–H system. J. Cryst. Growth 65(1–3), 399 (1983).CrossRefGoogle Scholar
25.Dayeh, S.A. and Picraux, S.T.: Direct observation of nanoscale size effects in Ge semiconductor nanowire growth. Nano Lett. 10(10), 4032 (2010).CrossRefGoogle ScholarPubMed
26.Froberg, L.E., Seifert, W., and Johansson, J.: Diameter-dependent growth rate of InAs nanowires. Phys. Rev. B 76(15), 4 (2007).CrossRefGoogle Scholar
27.De Jong, E., LaPierre, R.R., and Wen, J.Z.: Detailed modeling of the epitaxial growth of GaAs nanowires. Nanotechnology 21(4), 10 (2010).CrossRefGoogle Scholar
28.Dubrovskii, V.G., Sibirev, N.V., Cirlin, G.E., Soshnikov, I.P., Chen, W.H., Larde, R., Cadel, E., Pareige, P., Xu, T., Grandidier, B., Nys, J.P., Stievenard, D., Moewe, M., Chuang, L.C., and Chang-Hasnain, C.: Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires. Phys. Rev. B 79, 205316 (2009).CrossRefGoogle Scholar
29.Lew, K.K. and Redwing, J.M.: Growth characteristics of silicon nanowires synthesized by vapor–liquid–solid growth in nanoporous alumina templates. J. Cryst. Growth 254(1/2), 14 (2003).CrossRefGoogle Scholar
30.Bloem, J., Claassen, W.A.P., and Valkenburg, W.: Rate-determining reactions and surface species in CVD silicon 4. The SiCl4–H2– N2 and the SiHCl3–H2–N2 system. J. Cryst. Growth 57(1), 177 (1982).CrossRefGoogle Scholar
31.Van der Putte, P., Giling, L.J., and Bloem, J.: Growth and etching of silicon in chemical vapor-deposition systems-influence of thermal-diffusion and temperature-gradient. J. Cryst. Growth 31, 299 (1975).CrossRefGoogle Scholar
32.Ohring, M.: The Materials Science of Thin Films, 2nd ed. (Academic Press, San Diego, 2002).Google Scholar