Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-fqvcn Total loading time: 0.383 Render date: 2021-04-15T18:33:25.806Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Formation, properties, thermal characteristics, and crystallization of hard magnetic Pr–Al–Fe–Cu bulk metallic glasses

Published online by Cambridge University Press:  31 January 2011

Zheng Li
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China, and Department of Applied Sciences and Technology, College of Math & Physics, Chongqing University, Chongqing 400044, People's Republic of China
Hai Yang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Ming Xiang Pan
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
De Qian Zhao
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Wan Lu Wang
Affiliation:
Department of Applied Sciences and Technology, College of Math & Physics, Chongqing University, Chongqing 400044, People's Republic of China
Wei Hua Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Corresponding
E-mail address:
Get access

Abstract

The Pr55–xAl12+xFe33–yCuy (0 ≤ x ≤ 5, 0 ≤ y ≤ 8) bulk metallic glasses (BMGs) 5 mm in diameter and 100 mm in length were prepared by copper mold suction casting. Hysteresis loops of the Pr55–xAl12+xFe33–yCuy BMGs and the corresponding Pr55Al12Fe30Cu3 crystallized alloy were measured, and the results showed that the Pr55–xAl12+xFe33–yCuy BMGs are hard magnetic, while the completely crystallized Pr55Al12Fe30Cu3 alloy is paramagnetic at room temperature. The thermal behavior and crystallization of the Pr55Al12Fe30Cu3 BMG were studied by differential scanning calorimetry, and the results indicated that the Pr-based BMG has obvious glass transition and a wide supercooled liquid region up to 75 K. The crystallization activation energy for the Pr55Al12Fe30Cu3 BMG is much smaller than that of Zr–Ti–Cu–Ni–Be BMG.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Lu, I.R., Wilde, G., Goerler, G., and Willnecker, R., J. Non-Cryst. Solids 577, 250252 (1999).Google Scholar
2.Johnson, W.L., MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar
3.Shen, T.D. and Schwarz, R.B., Appl. Phys. Lett. 75, 49 (1999).CrossRefGoogle Scholar
4.Inoue, A., Zhang, T., and T Masumoto, J. Non-Cryst. Solids 156–158, 473 (1993).CrossRefGoogle Scholar
5.Inoue, A., Zhang, T., Takeuchi, A., and Zhang, W., Mater. Trans. JIM 37, 636 (1996).CrossRefGoogle Scholar
6.Inoue, A., Zhang, T., and Takeuchi, A., Mater. Trans. JIM 37, 1731 (1996).CrossRefGoogle Scholar
7.He, Y., Price, C.E., and Poon, S.J., Philos. Mag. Lett. 70, 371 (1994).CrossRefGoogle Scholar
8.Wang, L., Ding, J., Li, Y., Phuc, N.X., and Dan, N.H., J. Appl. Phys. 89, 8046 (2001).CrossRefGoogle Scholar
9.Schneider, S., Bracchi, A., Samwer, K., Seibt, M., and Thiyagarajan, P., Appl. Phys. Lett. 80, 1749 (2002).CrossRefGoogle Scholar
10.Hong, N.M., Dan, N.H., and Phuc, N.X., J. Magn. Magn. Mater. 242, 847 (2002).CrossRefGoogle Scholar
11.Chiric, H. and Lupu, N., J. Mater. Sci. Eng. A 304–306, 727 (2001).CrossRefGoogle Scholar
12.Fan, G.J., Löser, W., Roth, S., Eckert, J., and Schultz, L., Appl. Phys. Lett. 75, 2984 (1999).CrossRefGoogle Scholar
13.Xing, L.Q., Eckert, J., Loser, W., Roth, S., and Schultz, L., J. App. Phys. 88, 3565 (2000).CrossRefGoogle Scholar
14.Wei, B.C., Wang, W.H., Pan, M.X., Han, B.S., Zhang, Z.R., and Hu, W.R., Phys. Rev. B 64, 012406 (1999).Google Scholar
15.Wei, B.C., Zhang, Y., Zhuang, Y.X., Zhao, D.Q., Pan, M.X., Wang, W.H., and Hu, W.R., J. Appl. Phys. 89, 3529 (2001).CrossRefGoogle Scholar
16.Wei, B.C., Löser, W., Xia, L., Roth, S., Pan, M.X., Wang, W.H., and Eckert, J., Acta Mater. 50, 4357 (2002).CrossRefGoogle Scholar
17.Zhang, Y., Tan, H., Kong, H.Z., Yao, B., and Li, Y., J. Mater. Res. 18, 664 (2003).CrossRefGoogle Scholar
18.Wang, W.H., Wei, Q., and Bai, H.Y., Appl. Phys. Lett. 71, 58 (1997).CrossRefGoogle Scholar
19.Bian, Z., Wang, R.J., Pan, M.X., Zhao, D.Q., and Wang, W.H., Adv. Mater. 15, 616 (2003).CrossRefGoogle Scholar
20.Wang, W.H., Bian, Z., Wen, P., Zhang, Y., and Pan, M.X., Intermetallics 10, 1249 (2002).CrossRefGoogle Scholar
21.Hu, Y., Pan, M.X., Liu, L., and Wang, W.H., Mater. Lett. 57, 2698 (2003).CrossRefGoogle Scholar
22.Li, Z., Bai, H.Y., Chen, Z.J., Pan, M.X., Zhao, D.Q., Wang, W.L., and Wang, W.H., Acta. Phys. Sin. (in Chinese) 52, 1461 (2003).Google Scholar
23.Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans. A 29, 1779 (1998).CrossRefGoogle Scholar
24.Fan, G.J., Loeser, W., Eckert, J., and Schultz, L., J. Mater. Res. 15, 1556 (2000).CrossRefGoogle Scholar
25.Zhao, Z.F., Pan, M.X., and Wang, W.H., Appl. Phys. Lett. 82, 4699 (2003).CrossRefGoogle Scholar
26.Massalski, T.B., Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1992), p. 1734.Google Scholar
27.Inoue, A., Takeuchi, A., and Zhang, T., Metall. Mater. Trans. 29A, 1779 (1998).CrossRefGoogle Scholar
28.Zhuang, Y.X., Zhao, D.Q., Pan, M.X., and Wang, W.H., Science in China (Series A) 30, 445 (2000).Google Scholar
29.Altounian, Z., Tu, G.H., and Strom-Olsen, J.O., J. Appl. Phys. 53, 4755 (1982).CrossRefGoogle Scholar
30.Meyer, A., Busch, R., and Schober, H., Phys. Rev. Lett. 83, 5027 (1999).CrossRefGoogle Scholar
31.Zhuang, Y.X., Wang, W.H., Zhang, Y., Pan, M.X., and Zhao, D.Q., Appl. Phys. Lett. 75, 2392 (1999).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 37 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 15th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Formation, properties, thermal characteristics, and crystallization of hard magnetic Pr–Al–Fe–Cu bulk metallic glasses
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Formation, properties, thermal characteristics, and crystallization of hard magnetic Pr–Al–Fe–Cu bulk metallic glasses
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Formation, properties, thermal characteristics, and crystallization of hard magnetic Pr–Al–Fe–Cu bulk metallic glasses
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *