Skip to main content Accessibility help
×
Home

Formation of a unique glass by spark plasma sintering of a zeolite

Published online by Cambridge University Press:  31 January 2011

Wan Jiang
Affiliation:
State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Lidong Chen
Affiliation:
State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Zhijian Shen
Affiliation:
Department of Inorganic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
Corresponding
Get access

Abstract

A simple approach, order–disorder transition (ODT), has been developed to synthesize a novel glass using ZSM-5 as starting materials. In this process, the ZSM-5 powders were pressed uniaxially in a graphite die and rapidly sintered using spark plasma sintering (SPS). High-resolution transmission electron microscopic images revealed that a few crystalline zeolite fragments were still preserved locally inside the SPS consolidated sample. Vickers microhardness and fracture toughness of this as-prepared transparent glass sample at room temperature reaches 7.3 ± 0.2 GPa and 2.0 ± 0.3MPa·m1/2, respectively. It is very interesting that these novel bulk transparent glasses exhibit ultraviolet photoluminescence (PL) properties at about ∼360 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Toki, M., Takeuchi, T., Miyasita, S., and Kanbe, S.: Fabrication of high-purity silica glass through the WSPA-sol-gel process. J. Mater. Sci. 27, 2857 (1992).CrossRefGoogle Scholar
2.Ding, J.Y. and Day, D.E.: Preparation of silica glass microspheres by sol-gel processing. J. Mater. Res. 6, 168 (1991).CrossRefGoogle Scholar
3.Nogami, M., Nagakura, T., Hayakawa, T., and Sakai, T.: Persistent spectral hole burning in Eu3+-doped silicate glasses codoping Al3+ and P5+ ions. Chem. Mater. 10, 3991 (1998).CrossRefGoogle Scholar
4.Prosposito, P., Marks, D., Zhang, H., and Glasbeek, M.: Femtosecond double proton-transfer dynamics in [2,2′-Bipyridyl]-3,3′-diol in sol-gel glasses. J. Phys. Chem. A 102, 8894 (1998).CrossRefGoogle Scholar
5.Pope, E.J.A. and Mackenzie, J.D.: Sol-gel processing of neodymia– silica glass. J. Am. Ceram. Soc. 76, 1325 (1993).CrossRefGoogle Scholar
6.Selvan, S.T., Bullen, C., Ashokkumar, M., and Mulvaney, P.: Synthesis of tunable, highly luminescent QD-glasses through sol-gel processing. Adv. Mater. 13, 985 (2001).3.0.CO;2-W>CrossRefGoogle Scholar
7.Mayerhöfer, T.G., Shen, Z., Leonova, E., Edén, M., Kriltz, A., and Popp, J.: Consolidated silica glass from nanoparticles. J. Solid State Chem. 181, 2442 (2008).CrossRefGoogle Scholar
8.Shen, Z., Adolfsson, E., Nygren, M., Gao, L., Kawaoka, H., and Niihara, K.: Dense hydroxyapatite-zirconia ceramic composites with high strength for biological applications. Adv. Mater. 13, 214 (2001).3.0.CO;2-5>CrossRefGoogle Scholar
9.Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M.: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763 (2006).CrossRefGoogle Scholar
10.Wang, L.J., Jiang, W., Chen, L.D., Yang, M., and Zhu, H.M.: Consolidation of nano-sized TiN powders by spark plasma sintering. J. Am. Ceram. Soc. 89, 2364 (2006).Google Scholar
11.Shen, Z., Peng, H., and Nygren, M.: The formation of in-situ reinforced microstructure in α-sialon ceramics I: Stoichiometric oxygenrich compositions. J. Mater. Res. 17, 336 (2002).CrossRefGoogle Scholar
12.Wang, L.J., Jiang, W., Chen, L.D., and Bai, G.Z.: Microstructure of Ti5Si3–TiC–Ti3SiC2 Ti5Si3–TiC nanocomposites in-situ synthesized by spark plasma sintering. J. Mater. Res. 19, 3004 (2004).CrossRefGoogle Scholar
13.Cundy, C.S. and Cox, P.A.: The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chem. Rev. 103, 663 (2003).CrossRefGoogle ScholarPubMed
14.Song, M.K., Shin, J.M., Chon, H., and Jhon, M.S.: Molecular dynamics study on the collapse of A-type zeolite framework. 1. Temperature dependence and prediction of melting phenomena. J. Phys. Chem. 93, 6463 (1989).CrossRefGoogle Scholar
15.Song, M.K., Shin, J.M., Chon, H., and Jhon, M.S.: Molecular dynamics study on the collapse of A-type zeolite framework. 2. Prediction of the structural transformation by fitting the radial distribution functions. J. Phys. Chem. 94, 7671 (1990).CrossRefGoogle Scholar
16.Colyer, L.M., Greaves, G.N., Carr, S.W., and Fox, K.K.: Collapse and recrystallization processes in zinc-exchanged zeolite-A: A combined x-ray diffraction, XAFS, and NMR study. J. Phys. Chem. B 101, 10105 (1997).CrossRefGoogle Scholar
17.Lechert, H. and Kleinwort, R.: Verified Synthesis of Zeolitic Materials, 2nd ed. (Elsevier, 2001)Google Scholar
18.Jansen, J.C., Van der Gaag, F.J., and Van Bekkum, H.: Identification of ZSM-type and other 5-ring containing zeolites by IR spectroscopy. Zeolites 4, 369 (1984).CrossRefGoogle Scholar
19.Baerlocher, C., Meier, W.M., and Olson, D.H.: Atlas of Zeolite Framework Types, 5th revised ed. (Elsevier, 2001).Google Scholar
20.Navrotsky, A.: Zeolite: Ordered, disordered, collapsed. Nat. Mater. 2, 571 (2003).CrossRefGoogle ScholarPubMed
21.Greaves, G.N., Meneau, F., Sapelkin, A., Colyer, L.M., Gwynn, I. Ap, Wade, S., and Sankar, G.: The rheology of collapsing zeolites amorphized by temperature and pressure. Nat. Mater. 2, 622 (2003).CrossRefGoogle ScholarPubMed
22.Sakurai, Y. and Nagasawa, K.: Excitation energy dependence of the photoluminescence band at 2.7 and 4.3 eV in silica glass at low temperature. J. Non-Cryst. Solids 290, 189 (2001).CrossRefGoogle Scholar
23.Tohmon, R., Shimogaichi, Y., Mizuno, H., Ohki, Y., Nagasawa, K., and Hama, Y.: 2.7-eV luminescence in as-manufactured highpurity silica glass. Phys. Rev. Lett. 62, 1388 (1989).CrossRefGoogle Scholar
24.Uchino, T. and Yamada, T.: White light emission from transparent SiO2 glass prepared from nanometer-sized silica particles. Appl. Phys. Lett. 85, 1164 (2004).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 49 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-kxqz4 Total loading time: 0.279 Render date: 2021-01-26T02:03:37.305Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Formation of a unique glass by spark plasma sintering of a zeolite
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Formation of a unique glass by spark plasma sintering of a zeolite
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Formation of a unique glass by spark plasma sintering of a zeolite
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *