Skip to main content Accessibility help
×
Home

Emerging materials for microelectromechanical systems at elevated temperatures

Published online by Cambridge University Press:  01 August 2014

Jessica A. Krogstad
Affiliation:
Mechanical Engineering Department, Johns Hopkins University, Baltimore, Maryland, USA
Chris Keimel
Affiliation:
GE Global Research, Niskayuna, New York, USA
Kevin J. Hemker
Affiliation:
Mechanical Engineering Department, Johns Hopkins University, Baltimore, Maryland, USA
Corresponding
E-mail address:
Get access

Abstract

Extension of microelectromechanical systems (MEMS) into more extreme operating conditions will require a wider range of material properties than are currently available in conventional systems. Successful integration of new materials is dependent on concurrent development of compatible fabrication routes and scale appropriate evaluation techniques. This review focuses on emerging material classes that have potential to replace silicon-based MEMS in elevated temperature applications. Basic silicon mechanical properties and micromachining methods are reviewed to provide context for developing material systems such as silicon carbide, silicon carbonitrides, and several nickel-based alloys. Potential improvements in strength, thermal stability, and reliability are juxtaposed with fabrication, reproducibility, and economic feasibility issues that must also be addressed.

Type
Reviews
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

Spearing, S.M.: Materials issues in microelectromechanical systems (MEMS). Acta Mater. 48(1), 179196 (2000).CrossRefGoogle Scholar
Esashi, M.: Revolution of sensors in micro-electromechanical systems. Jpn. J. Appl. Phys. 51(8), 8 (2012).CrossRefGoogle Scholar
Wilson, S.A., Jourdain, R.P.J., Zhang, Q., Dorey, R.A., Bowen, C.R., Willander, M., Wahab, Q.U., Al-hilli, S.M., Nur, O., Quandt, E., Johansson, C., Pagounis, E., Kohl, M., Matovic, J., Samel, B.R., van der Wijngaart, W., Jager, E.W.H., Carlsson, D., Djinovic, Z., Wegener, M., Moldovan, C., Iosub, R., Abad, E., Wendlandt, M., Rusu, C., and Persson, K.: New materials for micro-scale sensors and actuators: An engineering review. Mater. Sci. Eng., R 56(1–6), 1129 (2007).CrossRefGoogle Scholar
Weiss, L.: Power production from phase change in MEMS and micro devices, a review. Int. J. Therm. Sci. 50(5), 639647 (2011).CrossRefGoogle Scholar
Jensen, K.F.: Silicon-based microchemical systems: Characteristics and applications. MRS Bull. 31(2), 101107 (2006).CrossRefGoogle Scholar
Ponmozhi, J., Frias, C., Marques, T., and Frazao, O.: Smart sensors/actuators for biomedical applications: Review. Measurement 45(7), 16751688 (2012).CrossRefGoogle Scholar
Ashton, K.: That Internet of Things Thing: In the real world, things matter more than ideas. RFID J. 22, June, 2009.Google Scholar
Witvrouw, A.: CMOS-MEMS integration today and tomorrow. Scr. Mater. 59(9), 945949 (2008).CrossRefGoogle Scholar
Buchheit, T.E., LaVan, D.A., Michael, J.R., Christenson, T.R., and Leith, S.D.: Microstructural and mechanical properties investigation of electrode posited and annealed LIGA nickel structures. Metall. Mater. Trans. A 33(3), 539554 (2002).CrossRefGoogle Scholar
Cho, H.S., Hemker, K.J., Lian, K., Goettert, J., and Dirras, G.: Measured mechanical properties of LIGA Ni structures. Sens. Actuators, A 103(1–2), 5963 (2003).CrossRefGoogle Scholar
Jacobson, S.A. and Epstein, A.H.: An informal survey of power MEMS. In Proceedings of the International Symposium on Micro-mechanical Engineering, Vol. 12, 2003; pp. 513519.Google Scholar
Chou, S.K., Yang, W.M., Chua, K.J., Li, J., and Zhang, K.L.: Development of micro power generators - A review. Appl. Energy 88(1), 116 (2011).CrossRefGoogle Scholar
Epstein, A.H.: Millimeter-scale, MEMS gas turbine engines. In Proceedings of ASME Turbo Expo Collocated with the 2003 International Joint Power Generation Conference, American Society of Mechanical Engineers, 2003; pp. 669696.Google Scholar
Liamini, M., Shahriar, H., Vengallatore, S., and Fréchette, L.G.: Design methodology for a Rankine microturbine: Thermomechanical analysis and material selection. J. Microelectromech. Syst. 20(1), 339351 (2011).CrossRefGoogle Scholar
Neudeck, P.G., Okojie, R.S., and Liang-Yu, C.: High-temperature electronics - A role for wide bandgap semiconductors? Proc. IEEE 90(6), 10651076 (2002).CrossRefGoogle Scholar
Hemker, K.J. and Sharpe, W.N.: Microscale characterization of mechanical properties. Annu. Rev. Mater. Res. 37, 93126 (2007).CrossRefGoogle Scholar
Madou, M.J.: Fundamentals of Microfabrication: The Science of Miniaturization (CRC Press, 2002).Google Scholar
Wise, K.D.: Special issue on integrated sensors, microactuators, & microsystems (MEMS). Proc. IEEE (1998).Google Scholar
Jensen, S.R., Yalçinkaya, A.D., Jacobsen, S.R., Rasmussen, T., Rasmussen, F.E., and Hansen, O.: Deep reactive ion etching for high aspect ratio microelectromechanical components. Phys. Scr. 2004(T114), 188 (2004).CrossRefGoogle Scholar
Esashi, M. and Ono, T.: From MEMS to nanomachine. J. Phys. D: Appl. Phys. 38(13), R223R230 (2005).CrossRefGoogle Scholar
Wu, B.Q., Kumar, A., and Pamarthy, S.: High aspect ratio silicon etch: A review. J. Appl. Phys. 108(5), 20 (2010).CrossRefGoogle Scholar
Sharpe, W.N.: Mechanical properties of MEMS materials. In The MEMS Handbook, Vol. 3, 2002; pp. 133.Google Scholar
Sharpe, W.N. Jr., Bin, Y., Vaidyanathan, R., and Edwards, R.L.: Measurements of Young's modulus, Poisson's ratio, and tensile strength of polysilicon. In Proceedings of the Tenth IEEE International Workshop on Microelectromechanical Systems, MEMS '97, 1997; pp. 424429.Google Scholar
Jayaraman, S., Edwards, R., and Hemker, K.: Relating mechanical testing and microstructural features of polysilicon thin films. J. Mater. Res. 14(03), 688697 (1999).CrossRefGoogle Scholar
DelRio, F.W., Friedman, L.H., Gaither, M.S., Osborn, W.A., and Cook, R.F.: Decoupling small-scale roughness and long-range features on deep reactive ion etched silicon surfaces. J. Appl. Phys. 114(11), 113506 (2013).CrossRefGoogle Scholar
Müller-Fiedler, R. and Knoblauch, V.: Reliability aspects of microsensors and micromechatronic actuators for automotive applications. Microelectron. Reliab. 43(7), 10851097 (2003).CrossRefGoogle Scholar
Nakao, S., Ando, T., Shikida, M., and Satol, K.: Mechanical properties of a micron-sized SCS film in a high-temperature environment. J. Micromech. Microeng. 16(4), 715720 (2006).CrossRefGoogle Scholar
Sharpe, W.N.: Tensile testing of MEMS materials at high temperatures. In Advances in Experimental Mechanics IV, Vol. 34, Dulieu-Barton, J.M. and Quinn, S., eds., Trans Tech Publications Ltd: Stafa-Zurich, 2005; pp. 5964.Google Scholar
Ando, T., Shikida, M., and Sato, K.: Tensile-mode fatigue testing of silicon films as structural materials for MEMS. Sens. Actuators, A 93(1), 7075 (2001).CrossRefGoogle Scholar
Muhlstein, C.L., Howe, R.T., and Ritchie, R.O.: Fatigue of polycrystalline silicon for microelectromechanical system applications: Crack growth and stability under resonant loading conditions. Mech. Mater. 36(1–2), 1333 (2004).CrossRefGoogle Scholar
Alsem, D.H., Pierron, O.N., Stach, E.A., Muhlstein, C.L., and Ritchie, R.O.: Mechanisms for fatigue of micron-scale silicon structural films. Adv. Eng. Mater. 9(1–2), 1530 (2007).CrossRefGoogle Scholar
Kahn, H., Avishai, A., Ballarini, R., and Heuer, A.: Surface oxide effects on failure of polysilicon MEMS after cyclic and monotonic loading. Scr. Mater. 59(9), 912915 (2008).CrossRefGoogle Scholar
Kahn, H., Ballarini, R., and Heuer, A.: Dynamic fatigue of silicon. Curr. Opin. Solid State Mater. Sci. 8(1), 7176 (2004).CrossRefGoogle Scholar
Romig, A.D., Dugger, M.T., and McWhorter, P.J.: Materials issues in microelectromechanical devices: Science, engineering, manufacturability and reliability. Acta Mater. 51(19), 58375866 (2003).CrossRefGoogle Scholar
Zorman, C.A. and Mehregany, M.: Materials for microelectromechanical systems. The MEMS Handbook (CRC Press, 2001).Google Scholar
Sharpe, W.N.: Mechanical properties of MEMS materials. The MEMS Handbook (CRC Press, 2001).Google Scholar
El-Rifai, J., Sedky, S., Van Hoof, R., Severi, S., Lin, D., Sangameswaran, S., Puers, R., Van Hoof, C., and Witvrouw, A.: SiGe MEMS at processing temperatures below 250 °C. Sens. Actuators, A 188, 230239 (2012).CrossRefGoogle Scholar
Sarro, P.M.: Silicon carbide as a new MEMS technology. Sens. Actuators, A 82(1–3), 210218 (2000).CrossRefGoogle Scholar
Sharpe, W.N. Jr., Beheim, G., Nemeth, N., Evans, L., and Jadaan, O.: Strength of single-crystal silicon carbide microspecimens at room and high temperature. In Proceedings of the 2005 SEM Annual Conf., Portland, OR, 2005.Google Scholar
Wang, W-X., Niu, L-S., Zhang, Y-Y., and Lin, E-Q.: Tensile mechanical behaviors of cubic silicon carbide thin films. Comput. Mater. Sci. 62, 195202 (2012).CrossRefGoogle Scholar
Mehregany, M. and Zorman, C.A.: SiC MEMS: Opportunities and challenges for applications in harsh environments. Thin Solid Films 355, 518524 (1999).CrossRefGoogle Scholar
Jackson, K.M.: Fracture strength, elastic modulus and Poisson's ratio of polycrystalline 3C thin-film silicon carbide found by microsample tensile testing. Sens. Actuators, A 125(1), 3440 (2005).CrossRefGoogle Scholar
Mehregany, M., Zorman, C.A., Rajan, N., and Wu, C.H.: Silicon carbide MEMS for harsh environments. Proc. IEEE 86(8), 15941610 (1998).CrossRefGoogle Scholar
Zorman, C.A. and Parro, R.J.: Micro- and nanomechanical structures for silicon carbide MEMS and NEMS. Phys. Status Solidi B 245(7), 14041424 (2008).CrossRefGoogle Scholar
Jiang, L. and Cheung, R.: A review of silicon carbide development in MEMS applications. Int. J. Comput. Mater. Sci. Surf. Eng. 2(3), 227242 (2009).Google Scholar
Stoldt, C.R., Carraro, C., Ashurst, W.R., Gao, D., Howe, R.T., and Maboudian, R.: A low-temperature CVD process for silicon carbide MEMS. Sens. Actuators, A 978, 410415 (2002).CrossRefGoogle Scholar
Avram, M., Avram, A., Bragaru, A., Bangtao, C., Poenar, D.P., and Iliescu, C.: Low stress PECVD amorphous silicon carbide for MEMS applications. In Proceedings of the Semiconductor Conference (CAS), 2010 International, 2010; pp. 239242.CrossRefGoogle Scholar
Zhao, F., Islam, M.M., and Huang, C.F.: Photoelectrochemical etching to fabricate single-crystal SiC MEMS for harsh environments. Mater. Lett. 65(3), 409412 (2011).CrossRefGoogle Scholar
Hossain, T.K., MacLaren, S., Engel, J.M., Liu, C., Adesida, I., and Okojie, R.S.: The fabrication of suspended micromechanical structures from bulk 6H-SiC using an ICP-RIE system. J. Micromech. Microeng. 16(4), 751 (2006).CrossRefGoogle Scholar
Rajan, N., Mehregany, M., Zorman, C.A., Stefanescu, S., and Kicher, T.P.: Fabrication and testing of micromachined silicon carbide and nickel fuel atomizers for gas turbine engines. J. Microelectromech. Syst. 8(3), 251257 (1999).CrossRefGoogle Scholar
Yoon, T.H., Lee, H.J., Yan, J., and Kim, D.P.: Fabrication of SiC-based ceramic microstructures from preceramic polymers with sacrificial templates and lithographic techniques - A review. J. Ceram. Soc. Jpn. 114(1330), 473479 (2006).CrossRefGoogle Scholar
Ishikawa, T., Namazu, T., Yoshiki, K., Inoue, S., and Hasegawa, Y.: Polycarbosilane-derived silicon carbide MEMS component fabricated by slip casting with SU8 micro mold. In Proceedings of the Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference on, 2010; pp. 416419.CrossRefGoogle Scholar
Cimalla, V., Pezoldt, J., and Ambacher, O.: Group III nitride and SiC based MEMS and NEMS: Materials properties, technology and applications. J. Phys. D: Appl. Phys. 40(20), 6386 (2007).CrossRefGoogle Scholar
Pearton, S., Ren, F., Wang, Y-L., Chu, B., Chen, K., Chang, C., Lim, W., Lin, J., and Norton, D.: Recent advances in wide bandgap semiconductor biological and gas sensors. Prog. Mater. Sci. 55(1), 159 (2010).CrossRefGoogle Scholar
Davies, S., Huang, T.S., Gass, M.H., Papworth, A.J., Joyce, T.B., and Chalker, P.R.: Fabrication of GaN cantilevers on silicon substrates for microelectromechanical devices. Appl. Phys. Lett. 84(14), 25662568 (2004).CrossRefGoogle Scholar
Wang, Y., Sasaki, T., Wu, T., Hu, F., and Hane, K.: Comb-drive GaN micro-mirror on a GaN-on-silicon platform. J. Micromech. Microeng. 21(3), 035012 (2011).CrossRefGoogle Scholar
Goericke, F., Chan, M., Vigevani, G., Izyumin, I., Boser, B., and Pisano, A.: High temperature compatible aluminum nitride resonating strain sensor. In Proceedings of the Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, 2011; pp. 19941997.CrossRefGoogle Scholar
Goericke, F.T., Vigevani, G., Izyumin, I.I., Boser, B.E., and Pisano, A.P.: Novel thin-film piezoelectric aluminum nitride rate gyroscope. In Proceedings of the Ultrasonics Symposium (IUS), 2012 IEEE International, 2012; pp. 10671070.CrossRefGoogle Scholar
Pearton, S.J., Kang, B.S., Suku, K., Ren, F., Gila, B.P., Abernathy, C.R., Jenshan, L., and Chu, S.N.G.: GaN-based diodes and transistors for chemical, gas, biological and pressure sensing. J. Phys. Condens. Matter 16(29), R961 (2004).CrossRefGoogle Scholar
Liew, L.A., Zhang, W.G., An, L.N., Shah, S., Luo, R.L., Liu, Y.P., Cross, T., Dunn, M.L., Bright, V., Daily, J.W., Raj, R., and Anseth, K.: Ceramic MEMS - New materials, innovative processing and future applications. Am. Ceram. Soc. Bull. 80(5), 2530 (2001).Google Scholar
Colombo, P., Mera, G., Riedel, R., and Soraru, G.D.: Polymer-derived ceramics: 40 Years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93(7), 18051837 (2010).Google Scholar
Bill, J. and Aldinger, F.: Precursor-derived covalent ceramics. Adv. Mater. 7(9), 775787 (1995).CrossRefGoogle Scholar
Liew, L-A., Liu, Y., Luo, R., Cross, T., An, L., Bright, V.M., Dunn, M.L., Daily, J.W., and Raj, R.: Fabrication of SiCN MEMS by photopolymerization of pre-ceramic polymer. Sens. Actuators, A 95(2–3), 120134 (2002).CrossRefGoogle Scholar
Liew, L.A., Zhang, W.G., Bright, V.M., An, L.N., Dunn, M.L., and Raj, R.: Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique. Sens. Actuators, A 89(1–2), 6470 (2001).CrossRefGoogle Scholar
Schulz, M., Börner, M., Göttert, J., Hanemann, T., Haußelt, J., and Motz, G.: Cross linking behavior of preceramic polymers effected by UV- and synchrotron radiation. Adv. Eng. Mater. 6(8), 676680 (2004).CrossRefGoogle Scholar
Schulz, M.: Polymer derived ceramics in MEMS/NEMS - A review on production processes and application. Adv. Appl. Ceram. 108(8), 454460 (2009).CrossRefGoogle Scholar
Greil, P.: Active-filler-controlled pyrolysis of preceramic polymers. J. Am. Ceram. Soc. 78(4), 835848 (1995).CrossRefGoogle Scholar
Greil, P.: Near net shape manufacturing of polymer derived ceramics. J. Eur. Ceram. Soc. 18(13), 19051914 (1998).CrossRefGoogle Scholar
Bright, V.M., Raj, R., Dunn, M.L., and Daily, J.W.: Injectable ceramic microcast silicon carbonitride (SiCN) microelectromechanical system (MEMS) for extreme temperature environments with extension: Micro packages for nano-devices. Colorado University at Boulder Office of Contracts and Grants, 2004.
Jung, S., Seo, D., Lombardo, S.J., Feng, Z.C., Chen, J.K., and Zhang, Y.: Fabrication using filler controlled pyrolysis and characterization of polysilazane PDC RTD arrays on quartz wafers. Sens. Actuators, A 175, 5359 (2012).CrossRefGoogle Scholar
Liu, Y.P., Liew, L.A., Luo, R.L., An, L.N., Dunn, M.L., Bright, V.M., Daily, J. W., and Raj, R.: Application of microforging to SiCN MEMS fabrication. Sens. Actuators, A 95(2–3), 143151 (2002).CrossRefGoogle Scholar
Zhang, D., Su, B., and Button, T.W.: Microfabrication of three-dimensional, free-standing ceramic MEMS components by soft moulding. Adv. Eng. Mater. 5(12), 924927 (2003).CrossRefGoogle Scholar
Lee, D-H., Park, K-H., Hong, L-Y., and Kim, D-P.: SiCN ceramic patterns fabricated by soft lithography techniques. Sens. Actuators, A 135(2), 895901 (2007).CrossRefGoogle Scholar
Probst, D., Hoche, H., Zhou, Y., Hauser, R., Stelzner, T., Scheerer, H., Broszeit, E., Berger, C., Riedel, R., Stafast, H., and Koke, E.: Development of PE-CVD Si/C/N: H films for tribological and corrosive complex-load conditions. Surf. Coat. Technol. 200(1–4), 355359 (2005).CrossRefGoogle Scholar
Ma, S., Xu, B., Wu, G., Wang, Y., Ma, F., Ma, D., Xu, K., and Bell, T.: Microstructure and mechanical properties of SiCN hard films deposited by an arc enhanced magnetic sputtering hybrid system. Surf. Coat. Technol. 202(22–23), 53795382 (2008).CrossRefGoogle Scholar
Bhattacharyya, A.S. and Mishra, S.K.: Micro/nanomechanical behavior of magnetron sputtered Si-C-N coatings through nanoindentation and scratch tests. J. Micromech. Microeng. 21(1), 015011 (2011).CrossRefGoogle Scholar
Hutchison, D.N., Morrill, N.B., Aten, Q., Turner, B.W., Jensen, B.D., Howell, L.L., Vanfleet, R.R., and Davis, R.C.: Carbon nanotubes as a framework for high-aspect-ratio MEMS fabrication. J. Microelectromech. Syst. 19(1), 7582 (2010).CrossRefGoogle Scholar
Malek, C.K. and Saile, V.: Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: A review. Microelectron. J. 35(2), 131143 (2004).CrossRefGoogle Scholar
Ebrahimi, F., Bourne, G.R., Kelly, M.S., and Matthews, T.E.: Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct. Mater. 11(3), 343350 (1999).CrossRefGoogle Scholar
Hemker, K.J. and Last, H.: Microsample tensile testing of LIGA nickel for MEMS applications. Mater. Sci. Eng., A 319, 882886 (2001).CrossRefGoogle Scholar
Collins, J.G., Wright, M., and Muhlstein, C.L.: Cyclic stabilization of electrodeposited nickel structural films. J. Microelectromech. Syst. 20(3), 753763 (2011).CrossRefGoogle Scholar
Rupert, T.J. and Schuh, C.A.: Mechanically driven grain boundary relaxation: A mechanism for cyclic hardening in nanocrystalline Ni. Philos. Mag. Lett. 92(1), 2028 (2012).CrossRefGoogle Scholar
Christenson, T.R., Buchheit, T.E., Schmale, D.T., and Bourcier, R.J.: Mechanical and metallographic characterization of LIGA fabricated nickel and 80%Ni-20%Fe permalloy. MRS Online Proc. Libr. 518(1), (1998).CrossRefGoogle Scholar
Yamasaki, T.: High-strength nanocrystalline Ni-W alloys produced by electrodeposition and their embrittlement behaviors during grain growth. Scr. Mater. 44(8–9), 14971502 (2001).CrossRefGoogle Scholar
Buchheit, T.E., Glass, S.J., Sullivan, J.R., Mani, S.S., Lavan, D.A., Friedmann, T.A., and Janek, R.: Micromechanical testing of MEMS materials. J. Mater. Sci. 38(20), 40814086 (2003).CrossRefGoogle Scholar
Goods, S., Kelly, J., and Yang, N.: Electrodeposited nickel-manganese: An alloy for microsystem applications. Microsyst. Technol. 10(6–7), 498505 (2004).CrossRefGoogle Scholar
Kelly, J., Goods, S., and Yang, N.: High performance nanostructured Ni-Mn alloy for microsystem applications. Electrochem. Solid-State Lett. 6(6), C88C91 (2003).CrossRefGoogle Scholar
Hearne, S.J., de Boer, M.P., Kotula, P.G., Dyck, C.W., Foiles, S.M., Follstaedt, D.M., and Buchheit, T.E.: Novel In Situ Mechanical Testers to Enable Integrated Metal Surface Micro-Machines (Sandia National Laboratories, 2005).Google Scholar
Talin, A.A., Marquis, E.A., Goods, S.H., Kelly, J.J., and Miller, M.K.: Thermal stability of Ni-Mn electrodeposits. Acta Mater. 54(7), 19351947 (2006).CrossRefGoogle Scholar
Hibbard, G.D., Aust, K.T., and Erb, U.: Thermal stability of electrodeposited nanocrystalline Ni–Co alloys. Mater. Sci. Eng, A 433(1–2), 195202 (2006).CrossRefGoogle Scholar
Haj-Taieb, M., Haseeb, A., Caulfield, J., Bade, K., Aktaa, J., and Hemker, K.J.: Thermal stability of electrodeposited LIGA Ni-W alloys for high temperature MEMS applications. Microsyst. Technol. 14(9–11), 15311536 (2008).CrossRefGoogle Scholar
Suresha, S.J., Haj-Taieb, M., Bade, K., Aktaa, J., and Hemker, K.J.: The influence of tungsten on the thermal stability and mechanical behavior of electrodeposited nickel MEMS structures. Scr. Mater. 63(12), 11411144 (2010).CrossRefGoogle Scholar
Haseeb, A. and Bade, K.: LIGA fabrication of nanocrystalline Ni-W alloy micro specimens from ammonia-citrate bath. Microsyst. Technol. 14(3), 379388 (2008).CrossRefGoogle Scholar
Shacham-Diamand, Y. and Sverdlov, Y.: Electrochemically deposited thin film alloys for ULSI and MEMS applications. Microelectron. Eng. 50(1–4), 525531 (2000).CrossRefGoogle Scholar
Choi, P., Al-Kassab, T., Gärtner, F., Kreye, H., and Kirchheim, R.: Thermal stability of nanocrystalline nickel-18 at.% tungsten alloy investigated with the tomographic atom probe. Mater. Sci. Eng., A 353(1–2), 7479 (2003).CrossRefGoogle Scholar
Schuh, C.A., Nieh, T.G., and Iwasaki, H.: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51(2), 431443 (2003).CrossRefGoogle Scholar
Keimel, C.F., Aimi, M.F., Bansal, S., Corderman, R.R., Kishore, K.V.S.R., Reddy, E.S., Saha, A., Subramanian, K., Thakre, P., and Corwin, A.D.: Switch Structure and Method. US Patent 2011/0067983, March 24, 2011.
Fleischer, R.L.: Solid-solution hardening. In The Strengthening of Metals. (Reinhold Publishing Co., New York, NY, 1964).
Rupert, T.J., Trenkle, J.C., and Schuh, C.A.: Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater. 59(4), 16191631 (2011).CrossRefGoogle Scholar
Detor, A.J., Miller, M.K., and Schuh, C.A.: Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography. Philos. Mag. 86(28), 44594475 (2006).CrossRefGoogle Scholar
Detor, A.J. and Schuh, C.A.: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22(11), 32333248 (2007).CrossRefGoogle Scholar
Borgia, C., Scharowsky, T., Furrer, A., Solenthaler, C., and Spolenak, R.: A combinatorial study on the influence of elemental composition and heat treatment on the phase composition, microstructure and mechanical properties of Ni-W alloy thin films. Acta Mater. 59(1), 386399 (2011).CrossRefGoogle Scholar
Miyamoto, H., Takehara, S., Uenoya, T., Fujiwara, H., and Goto, T.: Nanocrystalline nickel dispersed with nano-size WO3 particles synthesized by electrodeposition. J. Mater. Sci. 47(12), 47984804 (2012).CrossRefGoogle Scholar
Balaraju, J., Manikandanath, N., and William Grips, V.: Phase transformation behavior of nanocrystalline Ni-W-P alloys containing various W and P contents. Surf. Coat. Technol. 206(10), 26822689 (2013).CrossRefGoogle Scholar
He, F., Yang, J., Lei, T., and Gu, C.: Structure and properties of electrodeposited Fe-Ni-W alloys with different levels of tungsten content: A comparative study. Appl. Surf. Sci. 253(18), 75917598 (2007).CrossRefGoogle Scholar
Goward, G. and Boone, D.: Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys. Oxid. Met. 3(5), 475495 (1971).CrossRefGoogle Scholar
Mevrel, R., Duret, C., and Pichoir, R.: Pack cementation processes. Mater. Sci. Technol. 2(3), 201206 (1986).CrossRefGoogle Scholar
Nicholls, J. and Stephenson, D.: High temperature coatings for gas turbines. Met. Mater. 7(3), 156163 (1991).Google Scholar
Hodge, A.M. and Dunand, D.C.: Synthesis of nickel-aluminide foams by pack-aluminization of nickel foams. Intermetallics 9(7), 581589 (2001).CrossRefGoogle Scholar
Dunand, D.C., Hodge, A.M., and Schuh, C.: Pack aluminisation kinetics of nickel rods and foams. Mater. Sci. Technol. 18(3), 326332 (2002).CrossRefGoogle Scholar
Johnson, S.J., Tryon, B., and Pollock, T.M.: Post-fabrication vapor phase strengthening of nickel-based sheet alloys for thermostructural panels. Acta Mater. 56(17), 45774584 (2008).CrossRefGoogle Scholar
Perez-Bergquist, S.J., Vermaak, N., and Pollock, T.M.: High-temperature performance of actively cooled vapor phase strengthened nickel-based thermostructural panels. AIAA J. 49(5), 10801086 (2011).CrossRefGoogle Scholar
Burns, D.E., Zhang, Y., Teutsch, M., Bade, K., Aktaa, J., and Hemker, K.J.: Development of Ni-based superalloys for microelectromechanical systems. Scr. Mater. 67(5), 459462 (2012).CrossRefGoogle Scholar
Burns, D.M.: Processing and Characterization of Ni-based Superalloy Micro-components and Films for MEMS Applications. Doctoral Dissertation, Department of Mechanical Engineering. Johns Hopkins University, Baltimore, MD, 2012.
Choe, H. and Dunand, D.C.: Synthesis, structure, and mechanical properties of Ni-Al and Ni-Cr-Al superalloy foams. Acta Mater. 52(5), 12831295 (2004).CrossRefGoogle Scholar
Liu, L., Li, Y., and Wang, F.: Influence of grain size on the corrosion behavior of a Ni-based superalloy nanocrystalline coating in NaCl acidic solution. Electrochim. Acta 53(5), 24532462 (2008).CrossRefGoogle Scholar
Hanyi, L., Fuhui, W., Bangjie, X., and Lixin, Z.: High-temperature oxidation resistance of sputtered micro-grain superalloy K38G. Oxid. Met. 38(3), 299307 (1992).CrossRefGoogle Scholar
Lou, H., Wang, F., Zhu, S., Xia, B., and Zhang, L.: Oxide formation of K38G superalloy and its sputtered micrograined coating. Surf. Coat. Technol. 63(1–2), 105114 (1994).CrossRefGoogle Scholar
Burns, D.M., Zhang, Y., Weihs, T.P., and Hemker, K.J.: Sputtered Ni-based superalloys for microscale devices. In Proceedings of the Superalloys 2012: 12th International Symposium on Superalloys, Huron, E.S., ed., Champion, PA, 2012; pp. 569576.Google Scholar
Oradei-Basile, A. and Radavich, J.F.: A current TTT diagram for wrought alloy 718. Superalloys 718(625), 325335 (1991).Google Scholar
Sharpe, W.N.: Murray lecture - Tensile testing at the micrometer scale: Opportunities in experimental mechanics. Exp. Mech. 43(3), 228237 (2003).CrossRefGoogle Scholar
Azevedo, R.G., Jones, D.G., Jog, A.V., Jamshidi, B., Myers, D.R., Li, C., Xiao-An, F., Mehregany, M., Wijesundara, M.B.J., and Pisano, A.P.: A SiC MEMS resonant strain sensor for harsh environment applications. IEEE Sens. J. 7(4), 568576 (2007).CrossRefGoogle Scholar
Förster, C., Cimalla, V., Lebedev, V., Pezoldt, J., Brueckner, K., Stephan, R., Hein, M., Aperathitis, E., and Ambacher, O.: Group III-nitride and SiC based micro- and nanoelectromechanical resonators for sensor applications. Phys. Status Solidi A 203(7), 18291833 (2006).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 18
Total number of PDF views: 150 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 19th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-kdwz2 Total loading time: 0.41 Render date: 2021-01-19T16:37:03.089Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Emerging materials for microelectromechanical systems at elevated temperatures
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Emerging materials for microelectromechanical systems at elevated temperatures
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Emerging materials for microelectromechanical systems at elevated temperatures
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *