Published online by Cambridge University Press: 13 December 2011
A TiO2/carbon nanotubes (TiO2/CNTs) composite was synthesized by chemical vapor deposition method with in situ growth of CNTs using hydrothermally treated TiO2 as the starting material. The nanocomposite was characterized by powder x-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, Raman spectrum, and nitrogen adsorption/desorption isotherms and was investigated as an anode material for lithium-ion batteries. The underlying mechanism for the improvement was analyzed by cyclic voltammetry and electrochemical impedance spectroscopy. The in situ synthesized composite showed better electrochemical performance than the pristine TiO2. The in situ formed CNTs not only supply an efficient conductive network but also keep the structural stability of the TiO2 particles, leading to improved electrochemical performance.
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between September 2016 - 25th February 2021. This data will be updated every 24 hours.