Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-55wx7 Total loading time: 0.419 Render date: 2021-03-02T14:39:50.708Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Electrical transport in the ferromagnetic state of silver substituted manganites La1−x Ag x MnO3 (x = 0.05 and 0.1)

Published online by Cambridge University Press:  28 January 2015

Dinesh Varshney
Affiliation:
Materials Science Laboratory, School of Physics, Devi Ahilya University, Indore 452001, India
Dinesh Choudhary
Affiliation:
Materials Science Laboratory, School of Physics, Devi Ahilya University, Indore 452001, India
Elias Khan
Affiliation:
Materials Science Laboratory, School of Physics, Devi Ahilya University, Indore 452001, India
Corresponding
E-mail address:
Get access

Abstract

The present study focuses on a quantitative analysis of electrical resistivity in monovalent-doped manganites La1−x Ag x MnO3 (x = 0.05 and 0.1). The electrical resistivity data in the ferromagnetic (FM) metallic phase are analyzed by considering a temperature-independent inelastic scattering of the electrons (due to domain and grain boundaries, defects, etc.) and other temperature-dependent elastic scattering mechanisms (electron–electron, electron–phonon, and electron–magnon). The Debye and Einstein temperatures are deduced from the model Hamiltonian containing potential energy contribution from the long-range Coulomb, van der Waals (vdW) interaction, and short-range repulsive interaction up to the second-neighbor ions. The electron–phonon scattering partially describes the reported FM metallic resistivity behavior with temperature for La1−x Ag x MnO3 (x = 0.05 and 0.1). The T 2 and T 4.5 terms accounting for electron–electron and electron–magnon interactions are essential for the correct description of resistivity. The Mott–Ioffe–Regel criterion for metallic conductivity is valid, and k F l ∼ 1, εFτ ∼ 1.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

Salamon, M.B. and Jaime, M.: The physics of manganites: Structure and transport. Rev. Mod. Phys. 73, 583 (2001).CrossRefGoogle Scholar
Zener, C.: Interaction between the d shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 (1951).CrossRefGoogle Scholar
Anderson, P.W. and Hasegawa, H.: Considerations on double exchange. Phys. Rev. 100, 675 (1955).CrossRefGoogle Scholar
Millis, A.J., Littlewood, P.B., and Shraiman, B.I.: Double exchange alone does not explain the resistivity of La1−xSrxMnO3 . Phys. Rev. Lett. 74, 5144 (1995).CrossRefGoogle Scholar
Roy, S., Guo, Y.Q., Venkatesh, S., and Ali, N.: Interplay of structure and transport properties of sodium-doped lanthanum manganite. J. Phys.: Condens. Matter 13, 9547 (2001).Google Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751 (1976).CrossRefGoogle Scholar
Abrashev, M.V., Litvinchuk, A.P., Iliev, M.N., Meng, R.L., Popov, V.N., Ivanov, V.G., Chakalov, R.A., and Thomsen, C.: Comparative study of optical phonons in the rhombohedrally distorted perovskites LaAlO3 and LaMnO3 . Phys. Rev. B 59, 4146 (1999).CrossRefGoogle Scholar
Millis, A.J., Shraiman, B.I., and Mueller, R.: Dynamic Jahn-Teller effect and colossal magnetoresistance in La1−x Sr x MnO3 . Phys. Rev. Lett. 77, 175 (1996).CrossRefGoogle Scholar
Sen, C., Alvarez, G., and Dagotto, E.: Competing ferromagnetic and charge-ordered states in models for manganites: The origin of the colossal magnetoresistance effect. Phys. Rev. Lett. 98, 127202 (2007).CrossRefGoogle ScholarPubMed
Yu, R., Dong, S., Şen, C., Alvarez, G., and Dagotto, E.: Short-range spin and charge correlations and local density of states in the colossal magnetoresistance regime of the single-orbital model for manganites. Phys. Rev. B 77, 214434 (2008).CrossRefGoogle Scholar
Ye, S.L., Song, W.H., Dai, J.M., Wang, K.Y., Wang, S.G., Zhang, C.L., Du, J.J., Sun, Y.P., and Fang, J.: Effect of Ag substitution on the transport property and magnetoresistance of LaMnO3 . J. Magn. Magn. Mater. 248, 26 (2002).CrossRefGoogle Scholar
Kumar, S. and Majumdar, P.: Singular effect of disorder on electronic transport in strongly coupled electron-phonon systems. Phys. Rev. Lett. 94, 136601 (2005).CrossRefGoogle ScholarPubMed
Kumar, S. and Majumdar, P.: Insulator-metal phase diagram of the optimally doped manganites from the disordered Holstein-double exchange model. Phys. Rev. Lett. 96, 016602 (2006).CrossRefGoogle ScholarPubMed
Alexandrov, A.S., Zhao, G-m., Keller, H., Lorenz, B., Wang, Y.S., and Chu, C.W.: Evidence for polaronic Fermi liquid in manganites. Phys. Rev. B 64, 140404 (2001).CrossRefGoogle Scholar
Zhao, G-m., Smolyaninova, V., Prellier, W., and Keller, H.: Electrical transport in the ferromagnetic state of manganites: Small-polaron metallic conduction at low temperatures. Phys. Rev. Lett. 84, 6086 (2000).CrossRefGoogle ScholarPubMed
Jaime, M., Lin, P., Salamon, M.B., and Han, P.D.: Low-temperature electrical transport and double exchange in La0.67(Pb, Ca)0.33MnO3 . Phys. Rev. B. 58, R5901 (1998).CrossRefGoogle Scholar
Kubo, K. and Ohata, N.: A quantum theory of double exchange. J. Phys. Soc. Jpn. 33, 21 (1972).CrossRefGoogle Scholar
Alexandrov, A.S. and Bratkovsky, A.M.: Carrier density collapse and colossal magnetoresistance in doped manganites. Phys. Rev. Lett. 82, 141 (1999).CrossRefGoogle Scholar
Varshney, D. and Kaurav, N.: Electrical resistivity in the ferromagnetic metallic state of La-Ca-MnO3: Role of electron-phonon interaction. Eur. Phys. J. B 40, 129 (2004).CrossRefGoogle Scholar
Varshney, D. and Kaurav, N.: Interpretation of temperature-dependent resistivity of La–Pb–MnO3: Role of electron–phonon interaction. J. Low Temp. Phys. 141, 165 (2005).CrossRefGoogle Scholar
Varshney, D., Mansuri, I., and Kaurav, N.: Effect of electron/hole doping on the transport properties of lanthanum manganites LaMnO3 . J. Phys.: Condens. Matter 19, 24 (2007).Google Scholar
Varshney, D., Shaikh, M.W., and Mansuri, I.: Interpretation of temperature-dependent resistivity of La0.7Ba0.3MnO3 manganites. J. Alloys Compd. 486, 726 (2009).CrossRefGoogle Scholar
Varshney, D., Choudhary, D., and Shaikh, M.W.: Interpretation of metallic and semiconducting temperature dependent resistivity of La1−x Na x MnO3 (x = 0.07, 0.13) manganites. Comput. Mater. Sci. 47, 839 (2010).CrossRefGoogle Scholar
Varshney, D., Choudhary, D., and Shaikh, M.W.: Electrical resistivity behavior of sodium substituted manganites: Electron-phonon, electron-electron and electron-magnon interactions. Eur. Phys. J. B 76, 327 (2010).CrossRefGoogle Scholar
Iliev, M.N., Abrashev, M.V., Lee, H-G., Popov, V.N., Sun, Y.Y., Thomsen, C., Meng, R.L., and Chu, C.W.: Raman spectroscopy of orthorhombic perovskite like YMnO3 and LaMnO3 . Phys. Rev. B 57, 2872 (1998).CrossRefGoogle Scholar
Granado, E., Moreno, N.O., García, A., Sanjurjo, J.A., Rettori, C., Torriani, I., Oseroff, S.B., Neumeier, J.J., McClellan, K.J., Cheong, S-W., and Tokura, Y.: Phonon Raman scattering in R1−xAxMnO3+δ (R = La, Pr; a = Ca, Sr). Phys. Rev. B 58, 11435 (1988).CrossRefGoogle Scholar
Tosi, M.P.: Cohesion of ionic solids in the Born model. Solid State Phys. 16, 1 (1964).CrossRefGoogle Scholar
Hafemeister, D.W. and Flygare, W.H.: Outer-shell overlap integral as a function of distance for halogen-halogen, halogen-alkali, and alkali-alkali ions in the alkali halide lattices. J. Chem. Phys. 43, 795 (1965).CrossRefGoogle Scholar
Slater, J.C. and Kirkwood, J.G.: The van der Waals forces in gases. Phys. Rev. 37, 682 (1931).CrossRefGoogle Scholar
Varshney, D., Kaurav, N., Kinge, R., and Singh, R.K.: B1–B2 structural phase transition and elastic properties of UX (X = S, Se, and Te) compounds at high pressure. J. Phys.: Condens. Matter 19, 236204 (2007).Google Scholar
Varshney, D., Joshi, G., Varshney, M., and Shriya, S.: Pressure dependent elastic and structural (B3–B1) properties of Ga based monopnictides. J. Alloys Compd. 495, 23 (2009).CrossRefGoogle Scholar
Varshney, D., Rathore, V., Kinge, R., and Singh, R.K.: High-pressure induced structural phase transition in alkaline earth CaX (X = S, Se and Te) semiconductors: NaCl-type (B1) to CsCl-type (B2). J. Alloys Compd. 484, 239 (2009).CrossRefGoogle Scholar
Varshney, D., Dagaonkar, G., and Varshney, M.: Pressure and doping dependent elastic and thermodynamical properties of Ga1−x In x P mixed valent compounds. Mater. Res. Bull. 45, 916 (2010).CrossRefGoogle Scholar
Varshney, D., Joshi, G., Varshney, M., and Shriya, S.: Pressure induced structural phase transition and elastic properties in BSb, AlSb, GaSb and InSb compounds. Phys. B 405, 1663 (2010).CrossRefGoogle Scholar
Varshney, D., Joshi, G., Varshney, M., and Shriya, S.: Pressure induced mechanical properties of boron based pnictides. Solid State Sci. 12, 864 (2010).CrossRefGoogle Scholar
Varshney, D., Shriya, S., and Varshney, M.: Study of pressure induced structural phase transition and elastic properties of lanthanum pnictides. Eur. Phys. J. B 85, 241 (2012).CrossRefGoogle Scholar
Varshney, D.: Mechanical, and elastic properties of europium mono-oxides and mono-chalcogenides (EuX; X = O, S, Se, Te). Europium: Synthesis, Characteristics and Potential Applications, Attia, M.S., ed.; Nova Science Publication, New York, (2013).Google Scholar
Varshney, D. and Shriya, S.: Elastic, mechanical and thermodynamic properties at high pressures and temperatures of transition metal monocarbides. Int. J. Refract. Met. Hard Mater. 41, 375 (2013).CrossRefGoogle Scholar
Millis, A.J.: Cooperative Jahn-Teller effect and electron-phonon coupling in La1−x A x MnO3 . Phys. Rev. B 53, 8434 (1996).CrossRefGoogle Scholar
Ederer, C., Lin, C., and Millis, A.J.: Structural distortions and model Hamiltonian parameters: From LSDA to a tight-binding description of LaMnO3 . Phys. Rev. B 76, 155105 (2007).CrossRefGoogle Scholar
Varshney, D.: Effect of impurity scatterers on phonon, electron and magnon thermal transport in electron doped cuprate superconductors. Supercond. Sci. Technol. 19, 433 (2006).CrossRefGoogle Scholar
Varshney, D. and Mansuri, I.: Influence of Ce doping on structural and transport properties of Ca1−x Ce x MnO3 (x = 0.2) manganite. J. Low Temp. Phys. 162, 52 (2011).CrossRefGoogle Scholar
Mansuri, I., Varshney, D., Kaurav, N., Lu, C.L., and Kuo, Y.K.: Effects of A-site disorder on magnetic, electrical and thermal properties of La0.5−x Ln x Ca0.5−y Sr y MnO3 manganites. J. Magn. Magn. Mater. 323, 316 (2011).CrossRefGoogle Scholar
Varshney, D., Dodiya, N., and Shaikh, M.W.: Structural properties and electrical resistivity of Na-substituted lanthanum manganites: La1−xNaxMnO3+y (x = 0.1, 0.125 and 0.15). J. Alloys Compd. 509, 7447 (2011).CrossRefGoogle Scholar
Varshney, D. and Dodiya, N.: Interpretation of metallic and semiconducting temperature dependent resistivity of La0.91Rb0.06Mn0.94O3 manganites. Solid State Sci. 13, 1623 (2011).CrossRefGoogle Scholar
Varshney, D. and Dodiya, N.: Electrical resistivity of the hole doped La0.8Sr0.2MnO3 manganites: Role of electron–electron/phonon/magnon interactions. Mater. Chem. Phys. 129, 896 (2011).CrossRefGoogle Scholar
Mansuri, I. and Varshney, D.: Structure and electrical resistivity of La1−xBaxMnO3 (0.25 ≤ x ≤ 0.35) perovskites. J. Alloys Compd. 513, 256 (2012).CrossRefGoogle Scholar
Shaikh, M.W. and Varshney, D.: Structural properties and electrical resistivity behavior of La1−x K x MnO3 (x = 0.1, 0.125 and 0.15) manganites. Mater. Chem. Phys. 134, 886 (2012).CrossRefGoogle Scholar
Marzari, N. and Vanderbilt, D.: Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847 (1997).CrossRefGoogle Scholar
Kamilov, I.K., Gamzatov, A.G., Aliev, A.M., Batdalov, A.B., Abdulvagidov, Sh.B., Mel’nikov, O.V., Gorbenko, O.Yu., and Kaul, A.R.: Kinetic effects in manganites La1−xAgyMnO3 (y ≤ x). J. Exp. Theor. Phys. 105, 774 (2007).CrossRefGoogle Scholar
Ghivelder, L., Castillo, I.A., McN Alford, N., Tomka, G.J., Riedi, P.C., MacManus-Driscoll, J., Akther Hossain, A.K.M., and Cohen, L.F.: Specific heat of La1−x Ca x MnO3−δ . J. Magn. Magn. Mater. 189, 274 (1998).CrossRefGoogle Scholar
Varshney, D., Mansuri, I., Kaurav, N., Lung, W.Q., and Kuo, Y.K.: Influence of Ce doping on electrical and thermal properties of La0.7−xCexCa0.3MnO3 (0.0 ≤ x ≤0.7) manganites. J. Magn. Magn. Mater. 324, 3276 (2012).CrossRefGoogle Scholar
Dodiya, N. and Varshney, D.: Structural properties and Raman spectroscopy of rhombohedral La1−xNaxMnO3 (0.075≤ x ≤0.15). J. Mol. Struct. 1031, 104 (2013).CrossRefGoogle Scholar
Varshney, D., Choudhary, D., and Khan, E.: Electrical transport in the ferromagnetic and paramagnetic state of potassium substituted manganites La1−xKxMnO3 (x = 0.05, 0.1 and 0.15). J. Mater. Sci. 48, 5904 (2013).CrossRefGoogle Scholar
Varshney, D. and Dodiya, N.: Electrical resistivity of alkali metal doped manganites LaxAyMnwO3 (A = Na, K, Rb): Role of electron-phonon, electron-electron and electron-magnon interactions. Curr. Appl. Phys. 13, 1188 (2013).CrossRefGoogle Scholar
Varshney, D., Mansuri, I., Shaikh, M.W., and Kuo, Y.K.: Effect of Fe and Co doping on electrical and thermal properties of La0.5Ce0.5Mn1−x(Fe,Co)xO3 manganites. MRS Bulletin 48, 4606.(2013).CrossRefGoogle Scholar
Varshney, D. and Dodiya, N.: Structural and magnetotransport studies of magnetic ion doping for monovalent-doped LaMnO3 manganites. J. Mater. Res. 29, 1183 (2014).CrossRefGoogle Scholar
Quijada, M., Cerne, J., Simpson, J.R., Drew, H.D., Ahn, K.H., Millis, A.J., Shreekala, R., Ramesh, R., Rajeswari, M., and Venkatesan, T.: Optical conductivity of manganites: Crossover from Jahn-Teller small polaron to coherent transport in the ferromagnetic state. Phys. Rev. B 58, 16093 (1998).CrossRefGoogle Scholar
Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., and Tokura, Y.: Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3 . Phys. Rev. B 51, 14103 (1995).CrossRefGoogle ScholarPubMed
Egilmez, M., Chow, K.H., Jung, J., Fan, I., Mansour, A.I., and Salman, Z.: Metal-insulator transition, specific heat, and grain-boundary-induced disorder in Sm0.55Sr0.45MnO3 . Appl. Phys. Lett. 92, 132505 (2008).CrossRefGoogle Scholar
Mannella, N., Yang, W.L., Tanaka, K., Zhou, X.J., Zheng, H., Mitchell, J.F., Zaanen, J., Devereaux, T.P., Nagaosa, N., Hussain, Z., and Shen, Z.X.: Polaron coherence condensation as the mechanism for colossal magnetoresistance in layered manganites. Phys. Rev. B 76, 233102 (2007).CrossRefGoogle Scholar
Mannella, N., Yang, W.L., Zhou, X.J., Zheng, H., Mitchell, J.F., Zaanen, J., Devereaux, T.P., Nagaosa, N., Hussain, Z., and Shen, Z.X.: Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites. Nature 438, 474 (2005).CrossRefGoogle ScholarPubMed
Graziosi, P., Gambardella, A., Prezioso, M., Riminucci, A., Bergenti, I., Homonnay, N., Schmidt, G., Pullini, D., and Busquets-Mataix, D.: Polaron framework to account for transport properties in metallic epitaxial manganite films. Phys. Rev. B 89, 214411 (2014).CrossRefGoogle Scholar
Chen, Z., Xu, Y., Su, Y., Cao, S., and Zhang, J.: Resistivity minimum behavior and weak magnetic disorder characteristics in La2/3Ca1/3MnO3 manganites. J. Supercond. Novel Magn. 22, 465 (2009).CrossRefGoogle Scholar
Schiffer, P., Ramirez, A.P., Bao, W., and Cheong, S-W.: Low temperature magnetoresistance and the magnetic phase diagram of La1−xCaxMnO3 . Phys. Rev. Lett. 75, 3335 (1995).CrossRefGoogle ScholarPubMed
Ang, R., Sun, Y.P., Yang, J., Zhu, X.B., and Song, W.H.: Transport mechanism and magnetothermoelectric power of electron-doped manganites La0.85Te0.15Mn1−xCuxO3 (0 ≤ x ≤ 0.2). J. Appl. Phys. 100, 073706 (2006).CrossRefGoogle Scholar
De Teresa, J.M., Ibarra, M.R., Blasco, J., García, J., Marquina, C., and Algarabel, P.A., Arnold, Z. and Kamenev, K., Ritter, C., and von Helmolt, R.: Spontaneous behavior and magnetic field and pressure effects on La2/3Ca1/3MnO3 perovskite. Phys. Rev. B 54, 1187 (1996).CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 7
Total number of PDF views: 29 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 2nd March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Electrical transport in the ferromagnetic state of silver substituted manganites La1−x Ag x MnO3 (x = 0.05 and 0.1)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Electrical transport in the ferromagnetic state of silver substituted manganites La1−x Ag x MnO3 (x = 0.05 and 0.1)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Electrical transport in the ferromagnetic state of silver substituted manganites La1−x Ag x MnO3 (x = 0.05 and 0.1)
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *