Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-zm8ws Total loading time: 0.161 Render date: 2021-06-12T11:25:56.327Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Effects of sintering parameters on the microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites

Published online by Cambridge University Press:  28 November 2016

Caiju Li
Affiliation:
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Xiaoqing Liu
Affiliation:
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Jianhong Yi
Affiliation:
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Long Teng
Affiliation:
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Rui Bao
Affiliation:
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Jun Tan
Affiliation:
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Chao Yang
Affiliation:
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Zhou Zou
Affiliation:
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Corresponding
Get access

Abstract

By using high purity aluminum powders and multi-walled carbon nanotubes (MWCNTs) as raw materials, MWCNTs/Al composites were fabricated with ball milling, followed by cold pressing, vacuum sintering, and hot extrusion. It was found that when the sintering temperature was 863 K, MWCNTs/Al composite sintered for 4 h showed good comprehensive properties, and its tensile strength and elongation reached to 156 MPa and 21%, respectively. The comprehensive mechanical properties of the composites became better with raising sintering temperature when the sintering time was 4 h. When the sintering temperature raised to 923 K, the tensile strength of the composite reached to 167 MPa which is three times more than that of annealed high purity aluminum, mainly due to the higher density and better interface bonding resulted from higher sintering temperature. CNTs' pulling out were observed obviously in the fractured surfaces, and load transfer may be the main strengthening mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Wang, Z., Qu, R.T., Scudino, S., Sun, B.A., Prashanth, K.G., Louzguine-Luzgin, D.V., Chen, M.W., Zhang, Z.F., and Eckert, J.: Hybrid nanostructured aluminum alloy with super-high strength. NPG Asia Mater. 7(12), e229 (2015).CrossRefGoogle Scholar
Bakshi, S., Lahiri, D., and Agarwal, A.: Carbon nanotube reinforced metal matrix composites—A review. Int. Mater. Rev. 55(1), 41 (2010).CrossRefGoogle Scholar
Teng, L., Li, C.J., Yuan, Q., Zhang, Q.X., Xi, Y., Li, C.H., Bao, R., and Zhu, X.K.: Progress of carbon nanotubes reinforced copper matrix composites. Mater. Rev. 28(7), 16 (2014).Google Scholar
Agarwal, A., Bakshi, S.R., and Lahiri, D.: Carbon Nanotubes Reinforced Metal Matrix Composites (CRC Press, New York, 2010).Google Scholar
Laha, T., Chen, Y., Lahiri, D., and Agarwal, A.: Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Composites, Part A 40(5), 589 (2009).CrossRefGoogle Scholar
Bal, S. and Samal, S.S.: Carbon nanotube reinforced polymer composites—A state of the art. Bull. Mater. Sci. 30(4), 379 (2007).CrossRefGoogle Scholar
Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forró, L., Benoit, W., and Zuppiroli, L.: Mechanical properties of carbon nanotubes. Appl. Phys. A. 69(3), 255 (1999).CrossRefGoogle Scholar
Iijima, S., Brabec, C., Maiti, A., and Bernholc, J.: Structural flexibility of carbon nanotubes. J. Chem. Phys. 104(5), 2089 (1996).CrossRefGoogle Scholar
Ajayan, P.M. and Tour, J.M.: Materials science—Nanotube composites. Nature 447(7148), 1066 (2007).CrossRefGoogle ScholarPubMed
Moghadam, A.D., Omrani, E., Menezes, P.L., and Rohatgi, P.K.: Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—A review. Composites, Part B 77, 402 (2015).CrossRefGoogle Scholar
Kwon, H., Lee, G.G., Kim, S.G., Lee, B.W., Seo, W.C., and Leparoux, M.: Mechanical properties of nanodiamond and multi-walled carbon nanotubes dual-reinforced aluminum matrix composite materials. Mater. Sci. Eng., A 632, 72 (2015).CrossRefGoogle Scholar
Park, J.G., Dong, H.K., and Lee, Y.H.: Strengthening mechanisms in carbon nanotube-reinforced aluminum composites. Carbon 95, 690 (2015).CrossRefGoogle Scholar
Bradbury, C.R., Gomon, J.K., Kollo, L., Kwon, H., and Leparoux, M.: Hardness of multi wall carbon nanotubes reinforced aluminium matrix composites. J. Alloys Compd. 585(3), 362 (2014).CrossRefGoogle Scholar
Trinh Pham, V., Bui, H.T., Tran, B.T., Nguyen, V.T., Le, D.Q., Than, X.T., Nguyen, V.C., Doan, D.P., and Phan, N.M.: The effect of sintering temperature on the mechanical properties of a Cu/CNT nanocomposite prepared via a powder metallurgy method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2(1), 015006 (2011).Google Scholar
Hao, X.N., Zhang, H.P., Zheng, R.X., Zhang, Y.T., Ameyama, K., and Chao-Li, M.A.: Effect of mechanical alloying time and rotation speed on evolution of CNTs/Al-2024 composite powders. Trans. Nonferrous Met. Soc. China 24(7), 2380 (2014).CrossRefGoogle Scholar
Pérez-Bustamante, R., Estrada-Guel, I., Antúnez-Flores, W., Miki-Yoshida, M., Ferreira, P.J., and Martínez-Sánchez, R.: Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes. J. Alloys Compd. 450(1–2), 323 (2008).CrossRefGoogle Scholar
Liu, Z.Y., Xu, S.J., Xiao, B.L., Xue, P., Wang, W.G., and Ma, Z.Y.: Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Composites, Part A 43(12), 2161 (2012).CrossRefGoogle Scholar
Chandran, P., Sirimuvva, T., Nayan, N., Shukla, A.K., Murty, S.V.S.N., Pramod, S.L., Sharma, S.C., and Bakshi, S.R.: Effect of carbon nanotube dispersion on mechanical properties of aluminum–silicon alloy matrix composites. J. Mater. Eng. Perform. 23(3), 1028 (2014).CrossRefGoogle Scholar
Mazaheri, M., Hassanzadeh-Tabrizi, S.A., and Sadrnezhaad, S.K.: Hot pressing of nanocrystalline zinc oxide compacts: Densification and grain growth during sintering. Ceram. Int. 35(3), 991 (2008).CrossRefGoogle Scholar
Pérez-Bustamante, R., Estrada-Guel, I., Amézaga-Madrid, P., Miki-Yoshida, M., Herrera-Ramírez, J.M., and Martínez-Sánchez, R.: Microstructural characterization of Al-MWCNT composites produced by mechanical milling and hot extrusion. Mater. Sci. Eng., A 495(2), 399 (2010).Google Scholar
Sridhar, I. and Narayanan, K.R.: Processing and characterization of MWCNT reinforced aluminum matrix composites. J. Mater. Sci. 44(7), 1750 (2009).CrossRefGoogle Scholar
Ci, L., Ryu, Z., Jin-Phillipp, N.Y., and Rühle, M.: Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater. 54(20), 5367 (2006).CrossRefGoogle Scholar
Pérez-Bustamante, R., Gómez-Esparza, C.D., Estrada-Guel, I., Miki-Yoshida, M., Licea-Jiménez, L., Pérez-García, S.A., and Martínez-Sánchez, R.: Microstructural and mechanical characterization of Al–MWCNT composites produced by mechanical milling. Mater. Sci. Eng., A 502(1–2), 159 (2009).CrossRefGoogle Scholar
Li, Z., Jiang, L., Fan, G., Xu, Y., Zhang, D., Chen, Z., and Humphries, S.: High volume fraction and uniform dispersion of carbon nanotubes in aluminium powders. Micro Nano Lett. 5(6), 379 (2010).CrossRefGoogle Scholar
Wang, Z., Georgarakis, K., Nakayama, K.S., Li, Y., Tsarkov, A.A., Xie, G., Dudina, D., Louzguine-Luzgin, D.V., and Yavari, A.R.: Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites. Sci. Rep. 6, 24384 (2016).CrossRefGoogle Scholar
Housaer, F., Beclin, F., Touzin, M., Tingaud, D., Legris, A., and Addad, A.: Interfacial characterization in carbon nanotube reinforced aluminum matrix composites. Mater. Charact. 110, 94 (2015).CrossRefGoogle Scholar
Zhu, X., Zhao, Y-G., Wu, M., Wang, H-Y., and Jiang, Q-C.: Fabrication of 2014 aluminum matrix composites reinforced with untreated and carboxyl-functionalized carbon nanotubes. J. Alloys Compd. 674, 145 (2016).CrossRefGoogle Scholar
Choi, H.J., Shin, J.H., and Bae, D.H.: The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites. Composites, Part A 43(7), 1061 (2012).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effects of sintering parameters on the microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effects of sintering parameters on the microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effects of sintering parameters on the microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *