Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-18T16:46:32.710Z Has data issue: false hasContentIssue false

Effect of annealing on magnetic properties of Ni–Mn–Ga glass-coated microwires

Published online by Cambridge University Press:  11 May 2018

Arcady Zhukov*
Affiliation:
Departamento de Física de Materiales, UPV/EHU, San Sebastián 20018, Spain; Departamento de Física Aplicada, EUPDS, UPV/EHU, San Sebastian 20018, Spain; and IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain
Mihail Ipatov
Affiliation:
Departamento de Física de Materiales, UPV/EHU, San Sebastián 20018, Spain; and IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain
Juan J. del Val
Affiliation:
Departamento de Física de Materiales, UPV/EHU, San Sebastián 20018, Spain
Paula Corte-León
Affiliation:
Departamento de Física de Materiales, UPV/EHU, San Sebastián 20018, Spain; and Departamento de Física Aplicada, EUPDS, UPV/EHU, San Sebastian 20018, Spain
Julian Gonzalez
Affiliation:
Departamento de Física de Materiales, UPV/EHU, San Sebastián 20018, Spain
Alexandr Granovsky
Affiliation:
Faculty of Physics, Lomonosov Moscow State University, Moscow 11991, Russian Federation
Valentina Zhukova
Affiliation:
Departamento de Física de Materiales, UPV/EHU, San Sebastián 20018, Spain
*
a)Address all correspondence to this author. e-mail: arkadi.joukov@ehu.es
Get access

Abstract

We studied the effect of annealing on magnetic properties and structure of Heusler-type NiMnGa glass-covered microwires with a metallic nucleus diameter of about 22 μm prepared using the Taylor–Ulitovsky method. The as-prepared NiMnGa glass-covered microwires do not present ferromagnetic order at room temperature. Magnetization curves of the as-prepared samples do not present either saturation or coercivity at temperatures above 5 K. After annealing of the microwires, a ferromagnetic ordering is obtained with a Curie temperature of about 300 K which is beneficial for magnetic solid state refrigeration. The hysteresis observed on temperature dependence of magnetization in annealed samples and magnetic softening at about 260 K has been interpreted as the first-order phase transformation. Observed changes have been discussed considering internal stress relaxation after annealing, nanocrystalline structure of the as-prepared and annealed samples, recrystallization process and magnetic ordering of phases identified in the as-prepared sample and appearing under recrystallization. Existence of insulating and flexible glass-coating is beneficial for improvement of mechanical properties but the glass coating considerably affects magnetic properties of NiMnGa microwires. Therefore special attention must be paid to annealing conditions for realization of martensitic transformation.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chernenko, V.A.: Compositional instability of β-phase in Ni–Mn–Ga alloys. Scr. Mater. 40, 523 (1999).CrossRefGoogle Scholar
Dunand, D.C. and Müllner, P.: Size effects on magnetic actuation in Ni–Mn–Ga shape-memory alloys. Adv. Mater. 23, 216 (2011).CrossRefGoogle ScholarPubMed
Acet, M., Manosa, L., and Planes, A.: Magnetic-field-induced effects in martensitic Heusler-based magnetic shape-memory alloys. In Handbook of Magnetic Materials, Vol. 19, Buschow, K.H.J., ed. (Elsevier, Amsterdam 2011); pp. 231–289.Google Scholar
Kuz’min, M.D.: Factors limiting the operation frequency of magnetic refrigerators. Appl. Phys. Lett. 90, 251916 (2007).CrossRefGoogle Scholar
Zhukov, A., Rodionova, V., Ilyn, M., Aliev, A.M., Varga, R., Michalik, S., Aronin, A., Abrosimova, G., Kiselev, A., Ipatov, M., and Zhukova, V.: Magnetic properties and magnetocaloric effect in Heusler-type glass-coated NiMnGa microwires. J. Alloy. Comp. 575, 73 (2013).CrossRefGoogle Scholar
Zhukov, A., Garcia, C., Ilyn, M., Varga, R., del Val, J.J., Granovsky, A., Rodionova, V., Ipatov, M., and Zhukova, V.: Magnetic and transport properties of granular and Heusler-type glass-coated microwires. J. Magn. Magn. Mater. 324, 3558 (2012).CrossRefGoogle Scholar
Zhukov, A., Ipatov, M., del Val, J.J., Zhukova, V., and Chernenko, V.A.: Magnetic and structural properties of glass-coated Heusler-type microwires exhibiting martensitic transformation. Sci. Rep. 8, 621 (2018).CrossRefGoogle ScholarPubMed
Besseghini, S., Gambardella, A., Chernenko, V.A., Hagler, M., Pohl, C., Mullner, P., Ohtsuka, M., and Doyle, S.: Transformation behavior of Ni–Mn–Ga/Si(100) thin film composites with different film thicknesses. Eur. Phys. J. Spec. Top. 158, 179 (2008).CrossRefGoogle Scholar
Recarte, V., Pérez-Landazábal, J.I., Sánchez-Alárcos, V., Chernenko, V.A., and Ohtsuka, M.: Magnetocaloric effect linked to the martensitic transformation in sputter-deposited Ni–Mn–Ga thin films. Appl. Phys. Lett. 95, 141908 (2009).CrossRefGoogle Scholar
Wang, Z.L., Zheng, P., Nie, Z.H., Ren, Y., Wang, Y.D., Müllner, P., and Dunand, D.C.: Superelasticity by reversible variants reorientation in a Ni–Mn–Ga microwire with bamboo grains. Acta Mater. 99, 373 (2015).CrossRefGoogle Scholar
Zhukov, A., Ipatov, M., Talaat, A., Blanco, J.M., Hernando, B., Gonzalez-Legarreta, L., Suñol, J.J., and Zhukova, V.: Correlation of crystalline structure with magnetic and transport properties of glass-coated microwires. Crystals 7, 41 (2017).CrossRefGoogle Scholar
Ulitovsky, A.V., Maianski, I.M., and Avramenco, A.I.: Method of continuous casting of glass coated microwire. USSR Patent No. 128427, Bulletin No. 10, 1960, p. 14.Google Scholar
Kraus, L., Schneider, J., and Wiesner, H.: Theory of ferromagnetic resonances in thin wires. Czech. J. Phys. B 26, 601 (1976).CrossRefGoogle Scholar
Chiriac, H., Ovari, T.A., and Marinescu, C.S.: Giant magneto-impedance effect in nanocrystalline glass-covered wires. J. Appl. Phys. 83, 6584 (1998).CrossRefGoogle Scholar
Zhukova, V., Blanco, J.M., Ipatov, M., and Zhukov, A.: Effect of transverse magnetic field on domain wall propagation inmagnetically bistable glass-coated amorphous microwires. J. Appl. Phys. 106, 113914 (2009).CrossRefGoogle Scholar
Talaat, A., Alonso, J., Zhukova, V., Garaio, E., García, J.A., Srikanth, H., Phan, M.H., and Zhukov, A.: Ferromagnetic glass-coated microwires with good heating properties for magnetic hyperthermia. Sci. Rep. 6, 39300 (2016).CrossRefGoogle ScholarPubMed
Wagner, S., Gleskova, H., Cheng, I-C., Sturm, J.C., and Suo, Z.: Mechanics of TFT technology on flexible substrates. In Flexible Flat Panel Displays, Crawford, G.P., ed. (John Wiley & Sons, Ltd, Chichester, U.K., 2005); ch. 14, 263282.CrossRefGoogle Scholar
Zhukov, A., Ipatov, M., del Val, J.J., Taskaev, S., Churyukanova, M., and Zhukova, V.: First-order martensitic transformation in Heusler-type glass-coated microwires. Appl. Phys. Lett. 111, 242403 (2017).CrossRefGoogle Scholar
Gomez-Polo, C., Perez-Landazabal, J.I., Recarte, V., Sanchez-Alarcos, V., Badini-Confalonieri, G., and Vazquez, M.: Ni–Mn–Ga ferromagnetic shape memory wires. J. Appl. Phys. 107, 123908 (2010).CrossRefGoogle Scholar
Aronin, A.S., Abrosimova, G.E., Kiselev, A.P., Zhukova, V., Varga, R., and Zhukov, A.: The effect of mechanical stress on Ni63.8Mn11.1Ga25.1 microwire crystalline structure and properties. Intermetallics 43, 60 (2013).CrossRefGoogle Scholar
Zhukova, V., Ipatov, M., Granovsky, A., and Zhukov, A.: Magnetic properties of Ni–Mn–In–Co Heusler-type glass-coated microwires. J. Appl. Phys. 115, 17A939 (2014).CrossRefGoogle Scholar
Khovailo, V.V., Chernenko, V.A., Cherechukin, A.A., Takagi, T., and Abe, T.: An efficient control of Curie temperature T C in Ni–Mn–Ga alloys. J. Magn. Magn Mater. 272–276, 2067 (2004).CrossRefGoogle Scholar
Kazakov, A., Prudnikov, V., Granovsky, A., Perov, N., Dubenko, I., Pathak, A.K., Samanta, T., Stadler, S., Ali, N., Zhukov, A., Ilyin, M., and Gonzalez, J.: Phase transitions, magnetotransport and magnetocaloric effects in a new family of quaternary Ni–Mn–In–Z Heusler alloys. J. Nanosci. Nanotechnol. 12, 7426 (2012).CrossRefGoogle Scholar
Sanchez-Alarcos, V., Perez-Landazabal, J.I., Recarte, V., Rodrıguez-Velamazan, J.A., and Chernenko, V.A.: Effect of atomic order on the martensitic and magnetic transformations in Ni–Mn–Ga ferromagnetic shape memory alloys. J. Phys.: Condens. Matter 22, 166001 (2010).Google ScholarPubMed
Chernenko, V.A., L’vov, V.A., Zagorodnyuk, S.P., and Takagi, T.: Ferromagnetism of thermoelastic martensites: Theory and experiment. Phys. Rev. B 67, 064407 (2003).CrossRefGoogle Scholar
Wu, S.K. and Yang, S.T.: Effect of composition on transformation temperatures of Ni–Mn–Ga shape memory alloys. Mater. Lett. 57, 4291 (2003).CrossRefGoogle Scholar
Shevyrtalov, S., Zhukov, A., Zhukova, V., and Rodionova, V.: Internal stresses influence on magnetic properties of Ni–Mn–Ga Heusler-type microwires. Intermetallics 94, 4246 (2018).CrossRefGoogle Scholar
Tietze, T., Audehm, P., Chen, Y-C., Schutz, G., Straumal, B.B., Protasova, S.G., Mazilkin, A.A., Straumal, P.B., Prokscha, T., Luetkens, H., Salman, Z., Suter, A., Baretzky, B., Fink, K., Wenzel, W., Danilov, D., and Goering, E.: Interfacial dominated ferromagnetism in nanograined ZnO: A μSR and DFT study. Sci. Rep. 5, 8871 (2014).CrossRefGoogle Scholar
Hernando, A. and Navarro, I.: Magnetism of soft nanocrystalline materials. In Nanophase Materials, Hadjipanayis, G.C. and Siegel, R.W., eds.; NATO ASI Series (Series E: Applied Sciences), Vol. 260 (Springer, Dordrecht, 1994); pp. 703–711.Google Scholar
Zhukov, A., Ipatov, M., Talaat, A., Aronin, A., Abrosimova, G., del Val, J.J., and Zhukova, V.: Magnetic hardening of Fe–Pt and Fe–Pt–M (M = B, Si) microwires. J. Alloy. Comp. 735, 10711078 (2018).CrossRefGoogle Scholar
Hsu, L-S., Wang, Y-K., and Guo, G.Y.: Experimental and theoretical study of the electronic structures of Ni3Al, Ni3Ga, Ni3In and NiGa. J. Appl. Phys. 92, 1419 (2002).CrossRefGoogle Scholar
Aurongzeb, D., Song, D.Y., Kipshidze, G., Yavich, B., Nyakiti, L., Lee, R., Chaudhuri, J., Temkin, H., and Holtz, M.: Growth of GaN nanowires on epitaxial GaN. J. Electron. Mater. 37, 1076 (2008).CrossRefGoogle Scholar
Antonov, A.S., Borisov, V.T., Borisov, O.V., Prokoshin, A.F., and Usov, N.A.: Residual quenching stresses in glass-coated amorphous ferromagnetic microwires. J. Phys. D: Appl. Phys. 33, 1161 (2000).CrossRefGoogle Scholar
Chiriac, H., Ovari, T.A., and Pop, G.: Internal stress distribution in glass-covered amorphous magnetic wires. Phys. Rev. B 42, 10105 (1995).Google Scholar
Zhukov, A., Gonzalez, J., Torcunov, A., Pina, E., Prieto, M.J., Cobeño, A.F., Blanco, J.M., Larin, V., and Baranov, S.: Ferromagnetic resonance and structure of Fe-based glass-coated microwires. J. Magn. Magn. Mater. 203, 238 (1999).CrossRefGoogle Scholar
Zhukov, A., Ipatov, M., Churyukanova, M., Talaat, A., Blanco, J.M., and Zhukova, V.: Trends in optimization of giant magnetoimpedance effect in amorphous and nanocrystalline materials. J. Alloy. Comp. 727, 887 (2017).CrossRefGoogle Scholar
Zhukov, A., Vázquez, M., Velázqez, J., Hernando, A., and Larin, V.: Magnetic properties of Fe-based glass-coated microwires. J. Magn. Magn. Mater. 170, 323 (1997).CrossRefGoogle Scholar
Zhukova, V., Cobeño, A.F., Zhukov, A., de Arellano Lopez, A.R., López-Pombero, S., Blanco, J.M., Larin, V., and Gonzalez, J.: Correlation between magnetic and mechanical properties of devitrified glass-coated Fe71.8Cu1Nb3.1Si15B9.1 microwires. J. Magn. Magn. Mater. 249, 79 (2002).CrossRefGoogle Scholar
Zhukov, A., Ipatov, M., del Val, J.J., Churyukanova, M., and Zhukova, V.: Tailoring of magnetic properties of Heusler-type glass-coated microwires by annealing. J. Alloy. Comp. 732, 561 (2018).CrossRefGoogle Scholar