Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-dkqnh Total loading time: 0.245 Render date: 2021-10-19T22:43:21.714Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Diffusion and isotope effect in bulk-metallic glass-forming Pd–Cu–Ni–P alloys from the glass to the equilibrium melt

Published online by Cambridge University Press:  31 January 2011

Volker Zöllmer
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der Universität Kiel, Kaiserstr. 2, 24143 Kiel, Germany
Klaus Raätzke
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der Universität Kiel, Kaiserstr. 2, 24143 Kiel, Germany
Franz Faupel*
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der Universität Kiel, Kaiserstr. 2, 24143 Kiel, Germany
*
b)Address all correspondence to this author. e-mail: ff@tf.uni-kiel.de This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.
Get access

Abstract

We report on radiotracer diffusion measurements in metallic bulk-glass-forming Pd-Cu-Ni-P alloys. The Pd-Cu-Ni-P system, with its high stability against crystallization, allows diffusion measurements from the glassy state to the equilibrium melt for the first time. Serial sectioning was performed by grinding and ion-beam sputtering. The time and temperature as well as mass dependence, expressed in terms of the isotope effect E, of codiffusion were investigated. In the glassy state as well as in the deeply supercooled state below the critical temperature Tc, where the mode-coupling theory predicts a freezing-in of liquidlike motion, the measured very small isotope effects indicated a highly collective hopping mechanism. Below Tc, the temperature dependence showed Arrhenius-type behavior. Above Tc, the onset of liquidlike motion was evidenced by a gradual drop of the effective activation energy, resulting from the decay of hopping barriers, and by the validity of the Stokes-Einstein equation, which was found to break down below Tc. This strongly supports the mode-coupling scenario. Isotope effect measurements, which have never been carried out near Tc in any material, showed atomic transport up to the equilibrium melt to be far away from the hydrodynamic regime of uncorrelated binary collisions. The latter appears to be a prerequisite of excellent glass-forming abilities.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mehrer, H. and Rummel, G., in Diffusion in Amorphous Materials, edited by Jain, H. and Gupte, D. (The Minerals, Metals & Materials Society, Warrendale, PA, 1994), p. 163.Google Scholar
2.Kronmüller, H., in Springer Series in Material Science, edted by Otooni, M.A. (Springer-Verlag, Berlin, Germany, 1998).Google Scholar
3.Faupel, F., Frank, W., Macht, M-P., Mehrer, H., Naundorf, V., Rätzke, K., Schober, H.R., Sharma, S.K., and Teichler, H., Rev. Mod. Phys. 75, 237 (2003).CrossRefGoogle Scholar
4.Cummins, H.Z., Li, G., Hwang, Y.H., Shen, G.Q., Du, W.M., Hernandez, J., and Tao, N.J., Z. Phys. B 103, 501 (1997).CrossRefGoogle Scholar
5.Meyer, A., Wuttke, J., Petry, W., Randl, O.G., and Schober, H., Phys. Rev. Lett. 80, 4454 (1998).CrossRefGoogle Scholar
6.Meyer, A., Busch, R., and Schober, H., Phys. Rev. Lett. 83, 5027 (1999).CrossRefGoogle Scholar
7.Ediger, M.D., Annu. Rev. Phys. Chem. 51, 99 (2000).CrossRefGoogle Scholar
8.Schober, H.R., Oligschleger, C., and Laird, B.B., J. Non-Cryst. Solids 156–158, 965 (1993).CrossRefGoogle Scholar
9.Schober, H.R., Gaukel, C., and Oligschleger, C., Prog. Theor. Phys. Suppl. 126, 67 (1997).CrossRefGoogle Scholar
10.Donati, C., Douglas, J.F., Kob, W., Plimpton, S.J., Poole, P.H., and Glotzer, S.C., Phys. Rev. Lett. 80, 2338 (1998).CrossRefGoogle Scholar
11.Oligschleger, C. and Schober, H.R., Phys. Rev. B 59, 811 (1999).CrossRefGoogle Scholar
12.Teichler, H., Phys. Rev. Lett. 76, 62 (1996).CrossRefGoogle Scholar
13.Greer, A.L., Nature 366, 303 (1999).CrossRefGoogle Scholar
14.Tang, X-P., Geyer, U., Busch, R., Johnson, W.L., and Wu, Y., Nature 402, 160 (1999).CrossRefGoogle Scholar
15.Loirat, Y., Bocquet, J.L., and Limoge, Y., J. Non-Cryst. Solids 265, 252 (2000).CrossRefGoogle Scholar
16.Sharma, S.K., Macht, M-P., and Naundorf, V., Phys. Rev. B 49, 6655 (1994).CrossRefGoogle Scholar
17.Faupel, F., Hüppe, P.W., and Rätzke, K., Phys. Rev. Lett. 65, 1219 (1990).CrossRefGoogle Scholar
18.Ehmler, H., Heesemann, A., Rätzke, K., and Faupel, F., Phys. Rev. Lett. 80, 4919 (1998).CrossRefGoogle Scholar
19.Heesemann, A., Zöllmer, V., Rätzke, K., and Faupel, F., Phys. Rev. Lett. 84, 1467 (2000).CrossRefGoogle Scholar
20.Heesemann, A., Rätzke, K., Zöllmer, V., and Faupel, F., N. J. Phys. 3, 6.1 (2001).CrossRefGoogle Scholar
21.Zöllmer, V., Ehmler, H., Rätzke, K., Troche, P., and Faupel, F., Europhys. Lett. 51, 75 (2000).CrossRefGoogle Scholar
22.Teichler, H., Def. Diff. Forum 143–147, 717 (1997).CrossRefGoogle Scholar
23.Rätzke, K., Hüppe, P.W., and Faupel, F., Phys. Rev. Lett. 68, 2347 (1992).CrossRefGoogle Scholar
24.Knorr, K., Macht, M-P., and Mehrer, H., in Bulk Metallic Glasses, edited by Johnson, W.L., Inoue, A., and Liu, C.T. (Mater. Res. Soc. Symp. Proc. 554, Warrendale, PA, 1999), p. 269.Google Scholar
25.Fielitz, P., Macht, M-P., Naundorf, V., and Frohberg, G., J. NonCryst. Solids 250–252, 674 (1999).CrossRefGoogle Scholar
26.Zumkley, T., Naundorf, V., and Macht, M-P., Z. Metallkd. 91, 901 (2000).Google Scholar
27.Geyer, U., Schneider, S., Johnson, W.L., Qiu, Y., Tombrello, T.A., and Macht, M-P., Phys. Rev. Lett. 75, 2364 (1995).CrossRefGoogle Scholar
28.Zumkley, T., Naundorf, V., Macht, M-P., and Frohberg, G., Ann. Chim. 27, 55 (2002).CrossRefGoogle Scholar
29.Götze, W. and Sjögren, L., Rep. Progr. Phys. 55, 241 (1992).CrossRefGoogle Scholar
30.Götze, W. and Sjögren, L., Transp. Theory Statist. Phys. 24, 801 (1995).CrossRefGoogle Scholar
31.Götze, W., J. Phys. 11, A1 (1999).Google Scholar
32.Adda, Y. and Phillibert, J., La Diffusion dans les Solides (Press Universitaires de Frances, Paris, France, 1966).Google Scholar
33.Mehrer, H., in Numerical Data and Functional Relationships in Science and Technology, edited by Landold-Börnstein, (New Series Group III, Springer-Verlag, Berlin, Germany, 1990).Google Scholar
34.Rätzke, K., Heesemann, A., and Faupel, F., J. Phys.: Cond. Matter 7, 7663 (1995).Google Scholar
35.Zöllmer, V., Rätzke, K., Faupel, F., Rehmet, A., and Geyer, U., Phys. Rev. B 65, 220201–1 (2002).CrossRefGoogle Scholar
36.Zöllmer, V., Rätzke, K., Meyer, A., and Faupel, F., Phys. Rev. Lett. 90, 195502–1 (2003).CrossRefGoogle Scholar
37.Meyer, A., Phys. Rev B 66, 134205–1 (2002).CrossRefGoogle Scholar
38.Faupel, F., Hüppe, P.W., Rätzke, K., Willecke, R., and Hehenkamp, T., J. Vac. Sci. Technol. A 10, 92 (1992).CrossRefGoogle Scholar
39.Schroers, J., Johnson, W.L., and Busch, R., Appl. Phys. Lett. 77, 1158 (2000).CrossRefGoogle Scholar
40.Zöllmer, V., Ph.D. Thesis, (University of Kiel, Shaker-Verlag, Aachen, Germany, 2002).Google Scholar
41.Inoue, A., Mat. Sci. Forum 179–181, 691 (1995).CrossRefGoogle Scholar
42.Lu, I-R., Wilde, G., Görler, G.P., and Willnecker, R., J. Non-Cryst. Solids 250–252, 577 (1999).CrossRefGoogle Scholar
43.Mundy, J.N., Tse, C.W., and McFall, W.D., Phys. Rev B 13, 2349 (1975).CrossRefGoogle Scholar
44.Ehmler, H., Rehmet, A., Rätzke, K., and Faupel, F., Def. Diff. Forum 203–205, 147 (2002).CrossRefGoogle Scholar
45.Zumkley, T., Naundorf, V., Macht, M-P., and Frohberg, G., Def. Diff. Forum 194–199, 801 (2001).CrossRefGoogle Scholar
46.Frohberg, G., Def. Diff. Forum, 143–147, 869 (1997).CrossRefGoogle Scholar
47.Frohberg, G., Kraatz, K-H., and Wever, H., Mater. Sci. Forum 15–18, 529 (1987).CrossRefGoogle Scholar
48.Kluge, M. and Schober, H.R., Phys. Rev. E 62, 597 (2000).CrossRefGoogle Scholar
49.Lu, I-R., Görler, G.P., Fecht, H.J., and Willnecker, R., J. Non-Cryst. Solids 312–314, 547 (2002).CrossRefGoogle Scholar
50.Haumesser, H., Bancillon, J., Daniel, M., Garandet, J.P., Barbe, J.C., and Kernevez, N., Int. J. Thermophys. 23, 1217 (2002).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Diffusion and isotope effect in bulk-metallic glass-forming Pd–Cu–Ni–P alloys from the glass to the equilibrium melt
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Diffusion and isotope effect in bulk-metallic glass-forming Pd–Cu–Ni–P alloys from the glass to the equilibrium melt
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Diffusion and isotope effect in bulk-metallic glass-forming Pd–Cu–Ni–P alloys from the glass to the equilibrium melt
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *