Skip to main content Accessibility help
×
Home
Hostname: page-component-77ffc5d9c7-n2wdk Total loading time: 0.211 Render date: 2021-04-23T11:43:52.914Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Devitrification and dielectric properties of (Na2O,BaO)–Nb2O5–SiO2 and (K2O,SrO)–Nb2O5–SiO2 glass–ceramics

Published online by Cambridge University Press:  31 January 2011

Fei Peng
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
Robert F. Speyer
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
Wesley Hackenberger
Affiliation:
TRS Technologies, State College, Pennsylvania 16801
Corresponding
Get access

Abstract

(Na2O,BaO)–Nb2O5–SiO2 and (K2O,SrO)–Nb2O5–SiO2 glass ribbons with varying proportions of alkali and alkaline earth were formed using roller quenching. (Na2O,BaO)–Nb2O5–SiO2 glasses of compositions devitrified to form Ba2NaNb5O15 (in the form of ∼80 nm crystallites in an amorphous matrix) yielded frequency-stable dielectric constants of ∼250 and losses of ∼0.05. Such low losses and frequency stabilities were also observed from (K2O,SrO)–Nb2O5–SiO2 glasses of compositions forming predominantly KSr2Nb5O6 (∼30 nm crystals), yielding dielectric constants of ∼400. Both optimized compositions showed moderate decreases in dielectric constant with increasing temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1Herczog, A.: Application of glass–ceramics for electronic components and circuits. IEEE Trans. Parts, Hybrids, Packag. PHP–9, 247 1973CrossRefGoogle Scholar
2Herczog, A.: Microcrystalline BaTiO3 by crystallization from glass. J. Am. Ceram. Soc. 47, 107 1964CrossRefGoogle Scholar
3Bhargava, A., Shelby, J.E. Snyder, R.L.: Crystallization of glasses in the system BaO–TiO2–B2O3. J. Non-Cryst. Solids 102, 136 1988CrossRefGoogle Scholar
4McCauley, D., Newnham, R.E. Randall, C.A.: Intrinsic size effects in a barium titanate glass–ceramic. J. Am. Ceram. Soc. 81, 979 1998CrossRefGoogle Scholar
5Grossman, D.G. Isard, J.O.: The application of dielectric mixing formulae to glass–ceramic systems. J. Phys. D: Appl. Phys. 3, 1058 1970CrossRefGoogle Scholar
6Kokubo, T. Tashiro, M.: Dielectric properties of fine-grained PbTiO3 crystals precipitated in a glass. J. Non-Cryst. Solids 13, 328 1973CrossRefGoogle Scholar
7Lynch, S.M. Shelby, J.E.: Crystal clamping in lead titanate glass–ceramics. J. Am. Ceram. Soc. 67, 424 1984CrossRefGoogle Scholar
8Shyu, J-J. Yang, Y-S.: Crystallization of a PbO–BaO–TiO2– Al2O3–SiO2 glass. J. Am. Ceram. Soc. 78, 1463 1995CrossRefGoogle Scholar
9Zeng, H.C., Tanaka, K., Hirao, K. Soga, N.: Crystallization and glass formation in 50Li2O·50Nb2O5 and 25Li2O·25Nb2O5·50SiO2. J. Non-Cryst. Solids 209, 112 1997CrossRefGoogle Scholar
10Todorović, M. Radonjić, Lj.: Lithium–niobate ferroelectric material obtained by glass crystallization. Ceram. Int. 23, 55 1997CrossRefGoogle Scholar
11Todorović, M. Radonjić, Lj.: Ferroelectric solid solution crystals of the ABO3 type by glass crystallization, in Ceramics Today-Tomorrow’s Ceramics edited by P. Vincenzini Elsevier Science, Amsterdam, The Netherlands 1991 19992004Google Scholar
12Borelli, N.F. Layton, M.M.: Dielectric and optical properties of transparent ferroelectric glass–ceramic systems. J. Non-Cryst. Solids 6, 197 1971CrossRefGoogle Scholar
13Radonjić, Lj., Todorović, M. Miladinović, J.: Nanostructured sodium niobate obtained by glass crystallization. Mater. Chem. Phys. 88, 427 2004CrossRefGoogle Scholar
14Du, J., Jones, B. Lanagan, M.: Preparation and characterization of dielectric glass–ceramics in the Na2O–PbO–Nb2O5–SiO2 system. Mat. Lett. 59, 2821 2005CrossRefGoogle Scholar
15Sato, T., Koike, Y., Endo, T. Shimada, M.: Preparation and characterization of quenched KNbO3–Nb2O5 glass. J. Mater. Sci. 26, 510 1991CrossRefGoogle Scholar
16Shyu, J-J. Wang, J-R.: Crystallization and dielectric properties of SrO–BaO–Nb2O5–SiO2 tungsten–bronze glass–ceramics. J. Am. Ceram. Soc. 83, 3135 2000CrossRefGoogle Scholar
17Cheng, C-T., Lanagan, M., Lin, J-T., Jones, B. Pan, M-J.: Crystallization kinetics and dielectric properties of nanocrystalline lead strontium barium niobates. J. Mater. Res. 20, 438 2005CrossRefGoogle Scholar
18Mandelcon, L., Gurkovich, S.R. Radford, K.C.: Voltage stabilization of ceramic capacitors, 17th Capacitor and Resistor Technology Symposium, (Electronic Components Assemblies & Materials Association, 1997) 255–260Google Scholar
19Lines, M.E. Glass, A.M.: Principles and Applications of Ferroelectrics and Related Materials Clarendon Press, Oxford, UK 1977Google Scholar
20Moulson, A.J. Herbert, J.M.: Electroceramics: Materials, Properties, Applications 2nd edition John Wiley and Sons, New York 2003 320–326CrossRefGoogle Scholar
21Elissalde, C. Ravez, J.: Ferroelectric ceramics: Defects and dielectric relaxations. J. Mater. Chem. 11, 1957 2001CrossRefGoogle Scholar
22Singh, S., Draegert, D.A. Geusic, J.E.: Optical and ferroelectric properties of barium sodium niobate. Phys. Rev. B 2, 2709 1970CrossRefGoogle Scholar
23Wang, P., Lee, J.H., Kim, J.J. Cho, S.H.: Effect of Nb2O5 content on microstructure and dielectric properties of Ba2–2xNa1–xNb5O15–5x /2 ceramics. Int. J. Mod. Phys. B 17, 1273 2003CrossRefGoogle Scholar
24Kim, M.S., Lee, J.H., Kim, J.J., Lee, H.Y. Cho, S.H.: Microstructure evolution and dielectric properties of Ba5–xNa2xNb10O30 ceramics with different Ba–Na ratios. J. Solid State Electrochem. 10, 18 2006CrossRefGoogle Scholar
25Giess, E.A., Burns, G., O’Kane, D.F. Smith, A.W.: Ferroelectric and optical properties of KSr2Nb15O30. Appl. Phys. Lett. 11, 233 1967CrossRefGoogle Scholar
26Xu, Y-H.: Ferroelectric and Piezoelectric Materials Cina Science Publishing Company 1978 284Google Scholar
27 ICDD Nos. 00-034-0123, 01-074-2441, 01-086-0734, 01-077-0589, 04-010-1523, 01-071-0945, 00-046-1287. International Center for Diffraction Data: Newton Square, PA, 2006Google Scholar
28Lente, M.H., de Los, J., Guerra, S., Eiras, J.A. Lanfredi, S.: Investigation of microwave dielectric relaxation process in the antiferroelectric phase of NaNbO3 ceramics. Solid State Commun. 131, 279 2004CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 9
Total number of PDF views: 59 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 23rd April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Devitrification and dielectric properties of (Na2O,BaO)–Nb2O5–SiO2 and (K2O,SrO)–Nb2O5–SiO2 glass–ceramics
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Devitrification and dielectric properties of (Na2O,BaO)–Nb2O5–SiO2 and (K2O,SrO)–Nb2O5–SiO2 glass–ceramics
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Devitrification and dielectric properties of (Na2O,BaO)–Nb2O5–SiO2 and (K2O,SrO)–Nb2O5–SiO2 glass–ceramics
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *