Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T17:13:04.665Z Has data issue: false hasContentIssue false

Development of the ReaxFF reactive force field for aluminum–molybdenum alloy

Published online by Cambridge University Press:  09 May 2013

Wen-Xiong Song
Affiliation:
Institute of Materials Science, Shanghai University, Shanghai 200072, China
Shi-Jin Zhao*
Affiliation:
Institute of Materials Science, Shanghai University, Shanghai 200072, China
*
a)Address all correspondence to this author. e-mail: shijin.zhao@shu.edu.cn
Get access

Abstract

We have developed a reactive force field within the ReaxFF framework to accurately describe reactions involving aluminum–molybdenum alloy, which are part parameters of Al–O–Mo ternary system metastable intermolecular composites. The parameters are optimized from a training set, whose data come from density functional theory (DFT) calculations and experimental value, such as heat of formation, geometry data, and equation of states, which are reproduced well by ReaxFF. Body-centered cubic molybdenum’s surface energy, vacancy formation, and two transformational paths, Bain and trigonal paths are calculated to validate the ReaxFF ability describing the defects and deformations. Some structures’ elastic constant and phonon are calculated by DFT and ReaxFF to predict the structures’ mechanics and kinetic stability. All those results indicate that the fitted parameters can describe the energy difference of various structures under various circumstances and generally represent the diffusion property but cannot reproduce the elasticity and phonon spectra so well.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aumann, C.E., Skofronick, G.L., and Martin, J.A.: Oxidation behavior of aluminum nanopowders. J. Vac. Sci. Technol., B 13(3), 1178 (1995).CrossRefGoogle Scholar
Granier, J.J. and Pantoya, M.L.: Laser ignition of nanocomposite thermites. Combust. Flame 138(4), 373 (2004).CrossRefGoogle Scholar
Bockmon, B.S., Pantoya, M.L., Son, S.F., Asay, B.W., and Mang, J.T.: Combustion velocities and propagation mechanisms of metastable interstitial composites. J. Appl. Phys. 98(6), 064903 (2005).CrossRefGoogle Scholar
Asay, B.W., Son, S.F., Busse, J.R., and Oschwald, D.M.: Ignition characteristics of metastable intermolecular composites. Propellants Explos. Pyrotech. 29(4), 216 (2004).CrossRefGoogle Scholar
Michelle, L.P., Steven, F.S., Wayne, C.D., Betty, S.J., Blaine, W.A., James, R.B., and Joseph, T.M.: Characterization of metastable intermolecular composites, in Defense Applications of Nanomaterials (American Chemical Society, Washington, DC, 2005), p. 227.Google Scholar
Plantier, K.B., Pantoya, M.L., and Gash, A.E.: Combustion wave speeds of nanocomposite Al/Fe2O3: The effects of Fe2O3 particle synthesis technique. Combust. Flame 140(4), 299 (2005).CrossRefGoogle Scholar
Levitas, V.I.: Burn time of aluminum nanoparticles: Strong effect of the heating rate and melt-dispersion mechanism. Combust. Flame 156(2), 543 (2009).CrossRefGoogle Scholar
Levitas, V.I., Pantoya, M.L., and Dikici, B.: Melt dispersion versus diffusive oxidation mechanism for aluminum nanoparticles: Critical experiments and controlling parameters. Appl. Phys. Lett. 92(1), 011921 (2008).CrossRefGoogle Scholar
Levitas, V.I., Asay, B.W., Son, S.F., and Pantoya, M.: Mechanochemical mechanism for fast reaction of metastable intermolecular composites based on dispersion of liquid metal. J. Appl. Phys. 101(8), 083524 (2007).CrossRefGoogle Scholar
Goringe, C.M., Bowler, D.R., and Hernández, E.: Tight-binding modelling of materials. Rep. Prog. Phys. 60(12), 1447 (1997).CrossRefGoogle Scholar
Daw, M.S., Foiles, S.M., and Baskes, M.I.: The embedded-atom method: A review of theory and applications. Mater. Sci. Rep. 9(7–8), 251 (1993).CrossRefGoogle Scholar
Baskes, M.I., Foiles, S.M., and Daw, M.S.: Application of the embedded atom method to the fracture of interfaces. J. de Physique Colloque. 49(C-5), C5-483 (1988).Google Scholar
Foiles, S.M., Baskes, M.I., and Daw, M.S.: Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B: Condens. Matter 33(12), 7983 (1986).CrossRefGoogle ScholarPubMed
Daw, M.S. and Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B: Condens. Matter 29(12), 6443 (1984).CrossRefGoogle Scholar
Daw, M.S. and Baskes, M.I.: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50(17), 1285 (1983).CrossRefGoogle Scholar
van Duin, A.C.T., Strachan, A., Stewman, S., Zhang, Q.S., Xu, X., and Goddard, W.A.: ReaxFF(SiO) reactive force field for silicon and silicon oxide systems. J. Phys. Chem. A 107(19), 3803 (2003).CrossRefGoogle Scholar
van Duin, A.C.T., Dasgupta, S., Lorant, F., and Goddard, W.A.: ReaxFF: A reactive force field for hydrocarbons. J. Phys. Chem. A 105(41), 9396 (2001).CrossRefGoogle Scholar
Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., and Sinnott, S.B.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14(4), 783 (2002).CrossRefGoogle Scholar
Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B: Condens. Matter 42(15), 9458 (1990).CrossRefGoogle ScholarPubMed
Tersoff, J.: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B: Condens. Matter 39(8), 5566 (1989).CrossRefGoogle ScholarPubMed
Tersoff, J.: Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61(25), 2879 (1988).CrossRefGoogle ScholarPubMed
Tersoff, J.: Empirical interatomic potential for silicon with improved elastic properties. Phys. Rev. B: Condens. Matter 38(14), 9902 (1988).CrossRefGoogle ScholarPubMed
Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B: Condens. Matter 37(12), 6991 (1988).CrossRefGoogle ScholarPubMed
Tersoff, J.: New empirical model for the structural properties of silicon. Phys. Rev. Lett. 56(6), 632 (1986).CrossRefGoogle ScholarPubMed
Johnston, H.S. and Parr, C.: Activation energies from bond energies. Hydrogen transfer reactions. J. Am. Chem. Soc. 85(17), 2544 (1963).CrossRefGoogle Scholar
Zhao, S.J., Germann, T.C., and Strachan, A.: Melting and alloying of Ni/Al nanolaminates induced by shock loading: A molecular dynamics simulation study. Phys. Rev. B 76(10), 104105 (2007).CrossRefGoogle Scholar
Zhao, S.J., Germann, T.C., and Strachan, A.: Molecular dynamics simulation of dynamical response of perfect and porous Ni/Al nanolaminates under shock loading. Phys. Rev. B 76(1), 014103 (2007).CrossRefGoogle Scholar
Zhao, S.J., Germann, T.C., and Strachan, A.: Atomistic simulations of shock-induced alloying reactions in Ni/Al nanolaminates. J. Chem. Phys. 25(16), 164707 (2006).CrossRefGoogle Scholar
Wu, H.Z. and Zhao, S.J.: Molecular dynamics study of the response of nanostructured Al/Ni clad particles system under thermal loading. J. Phys. Chem. A 115(46), 13605 (2011).CrossRefGoogle ScholarPubMed
Strachan, A., Kober, E.M., van Duin, A.C.T., Oxgaard, J., and Goddard, W.A.: Thermal decomposition of RDX from reactive molecular dynamics. J. Chem. Phys. 122(5), 054502 (2005).CrossRefGoogle ScholarPubMed
Strachan, A., van Duin, A.C.T., Chakraborty, D., Dasgupta, S., and Goddard, W.A. III.: Shock waves in high-energy materials: The initial chemical events in nitramine RDX. Phys. Rev. Lett. 91(9), 098301 (2003).CrossRefGoogle ScholarPubMed
Buehler, M.J., van Duin, A.C.T., and Goddard, W.A. III.: Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field. Phys. Rev. Lett. 96(9), 095505 (2006).CrossRefGoogle ScholarPubMed
Chenoweth, K., Cheung, S., van Duin, A.C.T., Goddard, W.A., and Kober, E.M.: Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. J. Am. Chem. Soc. 127(19), 7192 (2005).CrossRefGoogle ScholarPubMed
Nielson, K.D., van Duin, A.C.T., Oxgaard, J., Deng, W-Q., and Goddard, W.A.: Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. J. Phys. Chem. A 109(3), 493 (2004).CrossRefGoogle Scholar
van Duin, A.C.T., Zeiri, Y., Dubnikova, F., Kosloff, R., and Goddard, W.A.: Atomistic-scale simulations of the initial chemical events in the thermal initiation of triacetonetriperoxide. J. Am. Chem. Soc. 127(31), 11053 (2005).CrossRefGoogle ScholarPubMed
Jarvi, T.T., Kuronen, A., Hakala, M., Nordlund, K., van Duin, A.C.T., Goddard, W.A. III., and Jacob, T.: Development of a ReaxFF description for gold. Eur. Phys. J. B 66(1), 75 (2008).CrossRefGoogle Scholar
Cheung, S., Deng, W-Q., van Duin, A.C.T., and Goddard, W.A.: ReaxFFMgH reactive force field for magnesium hydride systems. J. Phys. Chem. A. 109(5), 851 (2005).CrossRefGoogle ScholarPubMed
Zhang, Q., Çaǧın, T., van Duin, A., Goddard, W.A., Qi, Y., and Hector, L.G. Jr.: Adhesion and nonwetting-wetting transition in the Al/α-Al2O3 interface. Phys. Rev. B 69(4), 045423 (2004).CrossRefGoogle Scholar
Goddard, W.A., Merinov, B., Van Duin, A., Jacob, T., Blanco, M., Molinero, V., Jang, S.S., and Jang, Y.H.: Multi-paradigm multi-scale simulations for fuel cell catalysts and membranes. Mol. Simul. 32(3–4), 251 (2006).CrossRefGoogle Scholar
Ludwig, J., Vlachos, D.G., van Duin, A.C.T., and Goddard, W.A.: Dynamics of the dissociation of hydrogen on stepped platinum surfaces using the ReaxFF reactive force field. J. Phys. Chem. B 110(9), 4274 (2006).CrossRefGoogle ScholarPubMed
Goddard, W.A. III., Chenoweth, K., Pudar, S., van Duin, A.C.T., and Cheng, M-J.: Structures, mechanisms, and kinetics of selective ammoxidation and oxidation of propane over multi-metal oxide catalysts. Top. Catal. 50(1–4), 2 (2008).CrossRefGoogle Scholar
Raymand, D., van Duin, A.C.T., Goddard, W.A. III., Hermansson, K., and Spangberg, D.: Hydroxylation structure and proton transfer reactivity at the zinc oxide-water interface. J. Phys. Chem. C 115(17), 8573 (2011).CrossRefGoogle Scholar
Raymand, D., van Duin, A.C.T., Spangberg, D., Goddard, W.A., and Hermansson, K.: Water adsorption on stepped ZnO surfaces from MD simulation. Surf. Sci. 604(9–10), 741 (2010).CrossRefGoogle Scholar
Raymand, D., van Duin, A.C.T., Baudin, M., and Hermansson, K.: A reactive force field (ReaxFF) for zinc oxide. Surf. Sci. 602(5), 1020 (2008).CrossRefGoogle Scholar
Shin, Y.K., Kwak, H., Zou, C., Vasenkov, A., and van Duin, A.C.T.: Development and validation of a ReaxFF reactive force field for Fe/Al/Ni alloys: Molecular dynamics study of elastic constants, diffusion, and segregation. Journal of Physical Chemistry A 116, 12163 (2012).CrossRefGoogle ScholarPubMed
Russo, M., Li, R., Mench, M., and van Duin, A.C.T.: Molecular dynamic simulation of aluminum-water reactions using the ReaxFF reactive force field. International Journal of Hydrogen Energy 36, 5828 (2011).CrossRefGoogle Scholar
Sen, F.G., Qi, Y., van Duin, A.C.T., and Alpas, A.T.: Native oxide induced softening in Al nanowires. Applied Physics Letters 102, 051912 (2013).CrossRefGoogle Scholar
Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37(12), 6991 (1988).CrossRefGoogle ScholarPubMed
Chenoweth, K., van Duin, A.C.T., and Goddard, W.A.: ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 112(5), 1040 (2008).CrossRefGoogle ScholarPubMed
Kresse, G. and Furthmuller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15 (1996).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996).CrossRefGoogle ScholarPubMed
Kresse, G. and Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558 (1993).CrossRefGoogle ScholarPubMed
Kresse, G. and Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49(20), 14251 (1994).CrossRefGoogle ScholarPubMed
Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50(24), 17953 (1994).CrossRefGoogle ScholarPubMed
Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., and Fiolhais, C.: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671 (1992).CrossRefGoogle ScholarPubMed
Ojwang, J.G.O., van Santen, R., Kramer, G.J., van Duin, A.C.T., and Goddard, W.A. III.: Predictions of melting, crystallization, and local atomic arrangements of aluminum clusters using a reactive force field. J. Chem. Phys. 129(24), 244506 (2008).CrossRefGoogle ScholarPubMed
van Duin, A.C.T., Baas, J.M.A., and van de Graaf, B.: Delft molecular mechanics: A new approach to hydrocarbon force fields: Inclusion of a geometry-dependent charge calculation. J. Chem. Soc. Faraday Trans. 90(19), 2881 (1994).CrossRefGoogle Scholar
Physics of Group IV Elements and III-V Compounds, Landolt-Bornstein, New Series, Group 3, Vol. 17 (Springer, Berlin, 1982).Google Scholar
Walford, L.: The structure of the intermetallic phases MoAl12, ReAl12 and TcAl12. Acta Crystallogr. 17(1), 57 (1964).CrossRefGoogle Scholar
Shilo, I. and Franzen, H.F.: High-temperature thermodynamic study of the molybdenum-rich regions of the Mo-Al system. J. Electrochem. Soc. 129(11), 2613 (1982).CrossRefGoogle Scholar
Wood, E.A., Compton, V.B., Matthias, B.T., and Corenzwit, E.: β-Wolfram structure of compounds between transition elements and aluminum, gallium and antimony. Acta Crystallogr. 11(9), 604 (1958).CrossRefGoogle Scholar
Lide, D.R.: Handbook of Chemistry and Physics, 81st ed. (Boca Ration, 2000–2001).Google Scholar
Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. 71(11), 809 (1947).CrossRefGoogle Scholar
Gonzales-Ormeño, P.G., Petrilli, H.M., and Schön, C.G.: Ab initio calculation of the bcc Mo–Al (molybdenum–aluminium) phase diagram: Implications for the nature of the ζ2-MoAl phase. Scr. Mater. 53(6), 751 (2005).CrossRefGoogle Scholar
Saunders, N.: The Al-Mo system (aluminum-molybdenum). J. Phase Equilib. 18(4), 370 (1997).CrossRefGoogle Scholar
Rexer, J.: The phase equilibria in the aluminium-molybdenum system at temperatures above 1400 C. Z. Met.kd. 62(11), 844 (1971).Google Scholar
Alonso, P.R. and Rubiolo, G.H.: Relative stability of bcc structures in ternary alloys with Ti50Al25Mo25 composition. Phys. Rev. B 62(1), 237 (2000).CrossRefGoogle Scholar
Nguyen-Manh, D. and Pettifor, D.G.: Electronic structure, phase stability and elastic moduli of AB transition metal aluminides. Intermetallics 7(10), 1095 (1999).CrossRefGoogle Scholar
Guellil, A.M. and Adams, J.B.: The application of the analytic embedded atom method to bcc metals and alloys. J. Mater. Res. 7(3), 639 (1992).CrossRefGoogle Scholar
Lee, B-J., Baskes, M.I., Kim, H., and Cho, Y.K.: Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B 64(18), 184102 (2001).CrossRefGoogle Scholar
Tyson, W.R. and Miller, W.A.: Surface free-energies of solid metals: Estimation from liquid surface-tension measurements. Surf. Sci. 62(1), 267 (1977).CrossRefGoogle Scholar
Dai, X.D., Kong, Y., Li, J.H., and Liu, B.X.: Extended Finnis-Sinclair potential for bcc and fcc metals and alloys. J. Phys. Condens. Matter. 18(19), 4527 (2006).CrossRefGoogle Scholar
Maier, K., Peo, M., Saile, B., Schaefer, H.E., and Seeger, A.: High-temperature positron-annihilation and vacancy formation in refractory-metals. Philos. Mag. A 40(5), 701 (1979).CrossRefGoogle Scholar
Bain, E.C.: The nature of martensite. Trans. Am. Inst. Min. Metall. Eng. 70, 25 (1924).Google Scholar
Paidar, V., Wang, L.G., Sob, M., and Vitek, V.: A study of the applicability of many-body central force potentials in NiAl and TiAl. Modell. Simul. Mater. Sci. Eng. 7(3), 369 (1999).CrossRefGoogle Scholar
Born, M. and Huang, K.: Dynamical Theory of Crystal Lattices (Oxford, Oxford, 1956).Google Scholar
Supplementary material: File

Song et al. supplementary material

Unknown

Download Song et al. supplementary material(File)
File 6.5 KB