Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-sbc4w Total loading time: 0.672 Render date: 2021-02-26T05:24:33.657Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Crystallization kinetics of sputter-deposited LaNiO3 thin films on Si substrate

Published online by Cambridge University Press:  31 January 2011

Hsin-Yi Lee
Affiliation:
Research Division, Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan, Republic of China, and Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30043, Taiwan, Republic of China
Tai-Bor Wu
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30043, Taiwan, Republic of China
Get access

Abstract

The kinetics of in situ crystallization of LaNiO3 thin films in sputtering deposition at temperatures ranging from 250 to 450 °C and isothermal crystallization of room-temperature (RT) sputtered LaNiO3 thin films in annealing at 350–500 °C were investigated by the x-ray diffraction method. The crystallization in both cases basically followed the Johnson–Mehl–Avrami (JMA) relation. However, different crystallization kinetics were observed. The transformation index and activation energy of crystallization in high temperature sputtering were about 1.5 and 33 kJ/mole, respectively, while in the annealing of RT-sputtered films, 1.0 and 63 kJ/mole were found. From the determined transformation index, it is suggested that the crystallization rate in high temperature sputtering was determined by a diffusion-controlled process of lateral growth with a decreasing nucleation rate of crystallites in the adsorption layer. However, the annealed films crystallized by an interface-controlled and one-dimensional growth of existing nuclei.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Bruchhaus, R., Pitzer, D., Eibl, O., Scheithauer, V., and Hoesler, W., in Ferroelectric Thin Films II, edited by Kingor, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 123.Google Scholar
2.Jiang, M. C. and Wu, T. B., J. Mater. Res. 9, 1879 (1994).CrossRefGoogle Scholar
3.Scott, J. F. and Paz de Araujo, C. A., Science 246, 1400 (1989).CrossRefGoogle Scholar
4.Eom, C. B., Dover, R. B. V., Phillips, J. M., Fliming, R. M., Cava, R. J., Marshall, J. H., Werder, D. J., Chen, C. H., and Fork, D. K.; in Ferroelectric Thin Films III, edited by Mayers, E. R., Tuttle, B. A., Desu, S. B., and Larsen, P. K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 145.Google Scholar
5.Vijat, D. P. and Desu, S. B., J. Electrochem. Soc. 140, 2640 (1993).Google Scholar
6.Nakamuna, T., Nakao, Y., Kamisawa, A., and Takasu, H., Jpn. J. Appl. Phys. 33, 5207 (1994).CrossRefGoogle Scholar
7.Ramesh, R., Chan, W. K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J. M., Keramidas, V. G., Fork, D. K., Lee, J., and Safari, A., Appl. Phys. Lett. 61, 1537 (1992).CrossRefGoogle Scholar
8.Wold, A., Post, B., and Banks, E., J. Am. Chem. Soc. 70, 4911 (1957).CrossRefGoogle Scholar
9.Obayashi, H. and Kudo, T., Jpn. J. Appl. Phys. 14, 330 (1957).CrossRefGoogle Scholar
10.Rajeex, K. P., Shivakuma, G. V., and Raychaudhmi, A. K., Solid State Commun. 79, 591 (1991).Google Scholar
11.Satyakahmi, K. M., Mallya, R. M., Wu, X. D., Brainard, B., Gautier, D. C., Vasanthacharya, N. Y., and Hegde, M. S., Appl. Phys. Lett. 62, 1233 (1993).Google Scholar
12.Ichinose, H., Nagano, M., Katsuki, H., and Takag, H., J. Mater. Sci. 29, 5115 (1994).CrossRefGoogle Scholar
13.Yang, C. C., Chen, M. S., Hong, T. J., Wu, C. M., Wu, J.M., and Wu, T. B., Appl. Phys. Lett. 66, 2643 (1995).CrossRefGoogle Scholar
14.Shyu, M. J., Hong, T. J., and Yu, T. B., Jpn. J. Appl. Phys. 34, 3647 (1995).CrossRefGoogle Scholar
15.Shyu, M. J., Hong, T. J., and Wu, T. B., Mater. Lett. 23, 221 (1995).CrossRefGoogle Scholar
16.Chen, M. S., Wu, J. M., and Wu, T. B., Jpn. J. Appl. Phys. 34, 4870 (1995).CrossRefGoogle Scholar
17.Chen, M. S., Wu, T. B., and Wu, J. M., Appl. Phys. Lett. 68 (10), 1430 (1996).CrossRefGoogle Scholar
18.Wu, Chii-Ming, Hong, Tian-Jue, and Wu, Tai-Bor, J. Mater. Res. 12, 2158 (1997).CrossRefGoogle Scholar
19.Tseng, T. F., Yang, C. C., Liu, K. S., Wu, J. M., Wu, T.B., and Lin, I. N., Jpn. J. Appl. Phys. 35, 4347 (1996).CrossRefGoogle Scholar
20.Petford-Long, A. K., Doole, R. C., Afonso, C. N., and Solis, J., J. Appl. Phys. 77 (2), 607 (1995).CrossRefGoogle Scholar
21.Scholte, P. M. L. O., Mater. Sci. Eng. B5, 233 (1990).CrossRefGoogle Scholar
22.Lee, Hsin-Yi, Wu, Tai-Bor, and Lee, Jyh-Fu, J. Appl. Phys. 80 (4), 2175 (1996).CrossRefGoogle Scholar
23. Hsin-Yi Lee and Tai-Bor Wu, J. Mater. Res. 12, 3165 (1997).CrossRefGoogle Scholar
24.Hong, T. J., Ph.D. Thesis (in Chinese), National Tsing Hua University, Taiwan, 1995.Google Scholar
25. JCPDS 34–314 and 33–710, Wustenberg, H., Hahn, Inst. Fur Kristallogr., Techische Hochschule, Aachen, Germany, JCPDS Grant-in-Report, 1981.Google Scholar
26. JCPDS 35–1242, Brisi, C., Vallino, M., and Abbattistra, F., J. Less-Comm. Met. 79 215 (1981).CrossRefGoogle Scholar
27.Cullity, B. D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Publishing Company, Inc., 1978), p. 134 and p. 292.Google Scholar
28.Jena, A. K., and Chaturvedi, M. C., in Phase Transformation in Materials, edited by Stewart, B. M.et al. (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1992), p. 66.Google Scholar
29.Avrami, M., J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
30.Avrami, M., J. Chem. Phys. 8, 212 (1940).CrossRefGoogle Scholar
31.Avrami, M., J. Chem. Phys. 9, 177 (1941).CrossRefGoogle Scholar
32.Ranganathan, S. and Heimendahl, M. V., J. Mater. Sci. 16, 2401 (1981).CrossRefGoogle Scholar
33.Morilla, M. C., Afonso, C. N., Petford-Long, A. K., and Doole, R. C., Philos. Mag. 73 (4), 1237 (1996).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 28 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Crystallization kinetics of sputter-deposited LaNiO3 thin films on Si substrate
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Crystallization kinetics of sputter-deposited LaNiO3 thin films on Si substrate
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Crystallization kinetics of sputter-deposited LaNiO3 thin films on Si substrate
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *