Hostname: page-component-6b989bf9dc-6f5p8 Total loading time: 0.001 Render date: 2024-04-14T09:13:24.578Z Has data issue: false hasContentIssue false

Coordination structures of implanted Fe, Co, and Ni ions in silica glass by x-ray absorption fine structure spectroscopy

Published online by Cambridge University Press:  31 January 2011

Kohei Fukumi*
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577, Japan
Akiyoshi Chayahara
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577, Japan
Kohei Kadono
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577, Japan
Hiroyuki Kageyama
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577, Japan
Tomoko Akai
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577, Japan
Hiroshi Mizoguchi
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577, Japan
Naoyuki Kitamura
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577, Japan
Masaki Makihara
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577, Japan
Yuji Horino
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577, Japan
Kanenaga Fujii
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577, Japan
*
a)Address all correspondence to this author. e-mail: fukuaji@onri.go.jp
Get access

Abstract

Coordination structures of implanted Fe, Co, and Ni ions were studied in 1.78–2.00-MeV 5 × 1016 ions/cm2-implanted silica glasses by x-ray absorption and optical absorption spectroscopies. It was found from x-ray absorption spectra that the implanted Fe, Co, and Ni ions are coordinated by ca.3 oxygen atoms. The implanted ions dispersed in glass matrix and did not form crystals. The valence of the implanted ions was about 1.5. The Fe–O, Co–O, and Ni–O interatomic distances were 190, 191, and 192 pm, respectively. In addition, it was found from optical absorption spectra that one-fifth of implanted Co ions were present as Co2+ ions in tetrahedral symmetry.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Weeks, R.A., in Materials Science and Technology, A Comprehensive Treatment, Vol. 9, Glasses and Amorphous Materials, edited by Zarzycki, J., (VCH, Weinheim, Germany, 1991), Chapter 6, pp. 331373.Google Scholar
2.Mazzoldi, P., Arnold, G.W., Battaglin, G., Bertoncello, R., and Gonella, G., Nucl. Instrum. Methods B 91, 478 (1994).CrossRefGoogle Scholar
3.Hosono, H., Jpn. J. Appl. Phys. 32, 3892 (1993).CrossRefGoogle Scholar
4.Perez, A., Treilleux, M., Capra, T., and Griscom, D.L., J. Mater. Res. 2, 910 (1987).CrossRefGoogle Scholar
5.Fukumi, K., Chayahara, A., Hayakawa, J., and Satou, M., in Surface Chemistry and Beam-Solid Interaction, edited by Atwater, H.A., Houle, F.A., and Lowndes, D.H. (Mater. Res. Soc. Symp. Proc. 201, Pittsburgh, PA, 1991), p. 241246.Google Scholar
6.Bertoncello, R., Trivillin, F., Cattaruzza, E., Mazzoldi, P., Arnold, G.W., Battaglin, G., and Catalano, M., J. Appl. Phys. 77, 1294 (1995).CrossRefGoogle Scholar
7.Fukumi, K., Chayahara, A., Makihara, M., Fujii, K., Hayakawa, J., and Satou, M., J. Am. Ceram. Soc. 77, 3019 (1994).Google Scholar
8.Whichard, G., Hosono, H.., Weeks, R.A., Zuhr, R.A., and Magruder, R.H., J. Appl. Phys. 67, 7526 (1990).Google Scholar
9.Bertoncello, R., Glisenti, A., Granozzi, G., Battaglin, G., Caccavale, F., Cattaruzza, E., and Mazzoldi, P., J. Non-Cryst. Solids 162, 205 (1993).CrossRefGoogle Scholar
10.Fukumi, K., Chayahara, A., Kadono, K., Kageyama, H., Akai, T., Kitamura, N., Makihara, M., Fujii, K., and Hayakawa, J., J. Non-Cryst. Solids 238, 143 (1998). Table 1 has a typological error. The unit of σ in the table is 10−2 nm.CrossRefGoogle Scholar
11.Hastings, J.B., in EXAFS Spectroscopy Techniques and Applications, edited by Teo, B.K. and Joy, D.C. (Plenum, New York, 1981), Chapter 2, pp. 171180.Google Scholar
12.Teo, B.K., EXAFS: Basic Principles and Data Analysis (Springer-Verlag, Berlin, Germany, 1986), Chapter 6, pp. 114157.CrossRefGoogle Scholar
13.Maeda, H., J. Phys. Soc. Jpn. 56, 2777 (1987).CrossRefGoogle Scholar
14.McKale, A.G., Veal, B.W., Paulikas, A.P., Chan, S.K., and Knapp, G.S., J. Am. Chem. Soc. 110, 3763 (1988).CrossRefGoogle Scholar
15.Greaves, G.N., Durham, P.J., Diakun, G., and Quinn, P., Nature 294, 139 (1981).CrossRefGoogle Scholar
16.Mansour, A.N., Melendres, C.A., Pankuch, M., and Brizzolara, R.A., J. Electrochem. Soc. 141, L69 (1994).CrossRefGoogle Scholar
17.Agarwal, B.K. and Verma, L.P., J. Phys. C 3, 535 (1970).CrossRefGoogle Scholar
18.Waychunas, G.A., Apted, M.J., and Brown, G.E. Jr., Phys. Chem. Miner. 10, (1983).CrossRefGoogle Scholar
19.Calas, G. and Petiau, J., Solid State Cummun. 48, 625 (1983).CrossRefGoogle Scholar
20.Ghatikar, M.N. and Padalia, B.D., J. Phys. C 11, 1941 (1978).CrossRefGoogle Scholar
21.Apai, G., Hammilton, J.F., Stohr, J., and Thompson, A., Phys. Rev. Lett. 43, 165 (1979).CrossRefGoogle Scholar
22.Galasso, F.S., International Series of Monographs in Solid State Physics, Vol. 7, Structure and Properties of Inorganic Solids (Pergamon, Oxford, United Kingdom, 1970), Chapter 2, pp. 2944 (Japanese translated version).Google Scholar
23.Morse, M.D., Hansen, G.P., Langridge-Smith, P.R.R., Zheng, L-S., Geusic, M.E., Michalopoulos, D.L., and Smalley, R.E., J. Chem. Phys. 80, 5400 (1984).CrossRefGoogle Scholar
24.Purdum, H. and Montano, P.A., Phys. Rev. B 25, 4412 (1982).CrossRefGoogle Scholar
25.DiLella, D.P., Limm, W., Lipson, R.H., Moskovits, M., and Taylor, K.V., J. Chem. Phys. 77, 5263 (1982).CrossRefGoogle Scholar
26.Badger, R.M., J. Chem. Phys. 2, 128 (1934).CrossRefGoogle Scholar
27.Badger, R.M., J. Chem. Phys. 3, 710 (1935).CrossRefGoogle Scholar
28.Harris, J. and Jones, R.O., J. Chem. Phys. 70, 830 (1979).CrossRefGoogle Scholar
29.Castro, M., Jamorski, C., and Salahub, D.R., Chem. Phys. Lett. 271, 133 (1997).Google Scholar
30.Brown, I.D., Acta Crystallogr. B 48, 553 (1992).CrossRefGoogle Scholar
31.Brese, N.E. and O’Keeffe, M., Acta Crystallogr. B 47, 192 (1991).CrossRefGoogle Scholar
32.Sanderson, R.T., Chemical Bonds and Bond Energy, 2nd ed.Academic Press, New York, 1976), Chapter 5, pp. 7594.Google Scholar
33.West, A.R., Solid State Chemistry and its Applications (John Wiley & Sons, Chichester, United Kingdom, 1984), Chapter 8.3, pp. 290301.Google Scholar
34.Shannon, R.D., Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
35.Pauling, L. and Soldate, A.M., Acta Crystallogr. 1, 212 (1948).CrossRefGoogle Scholar
36.Aronsson, B., Acta Chem. Scand. 14, 1414 (1960).CrossRefGoogle Scholar
37.Bertaut, F. and Blum, P., C.R. Acad. Sci. Paris 231, 626 (1950).Google Scholar
38.Toman, K., Acta Crystallogr. 4, 462 (1951).CrossRefGoogle Scholar
39.Engström, I., Acta Chem. Scand. 24, 1466 (1970).CrossRefGoogle Scholar
40.Schubert, K. and Pfisterer, H., Metallk, Z.. 41, 433 (1950).Google Scholar
41.O’Keeffe, M. and Brese, N.E., J. Am. Chem. Soc. 113, 3226 (1991).CrossRefGoogle Scholar
42.Stern, E.A., Sayers, D.E., and Lytle, F.E., Phys. Rev. B 11, 4836 (1975).CrossRefGoogle Scholar
43.Teo, B.K., EXAFS: Basic Principles and Data Analysis, (Springer-Verlag, Berlin, Germany, 1986), Chapter 5, pp. 79113.CrossRefGoogle Scholar
44.Schultz, P.C., J. Am. Ceram. Soc. 57, 309 (1974).CrossRefGoogle Scholar
45.Sigel, G.H. Jr., in Treatise on Materials Science and Technology, Vol. 12, Glass I: Interaction with Electromagnetic Radiation, edited by Tomozawa, N. and Doremus, R.H. (Academic Press, Orlando, FL, 1977), pp. 589.CrossRefGoogle Scholar
46.Bamford, C.R., Phys. Chem. Glasses 3, 189 (1962).Google Scholar
47.Bates, T., in Modern Aspects of the Vitreous State, edited by Mackenzie, J.D. (Butterworth & Co. Ltd., London, United Kingdom, 1962), Vol. 2, Chapter 5, pp. 195254.Google Scholar
48.Maslen, E.N., Streltsov, V.A., Streltsova, N.R., and Ishizawa, N., Acta Crystallogr. B 50, 435 (1994).Google Scholar
49.Sasaki, S., Acta Crystallogr. B 53, 762 (1997).CrossRefGoogle Scholar
50.Baur, W.H., Acta Crystallogr. 17, 1167 (1964).CrossRefGoogle Scholar
51.Schmahl, N.G. and Eikerling, G.F., Z. Phys. Chem. 62, 268 (1968).CrossRefGoogle Scholar
52.Morimoto, N., Tokonami, M., Watanabe, M., and Koto, K., Am. Mineral. 59, 475 (1974).Google Scholar
53.Toriumi, K., Ozima, M., Akaogi, M., and Saito, Y., Acta Crystallogr. B 34, 1093 (1978).CrossRefGoogle Scholar
54.Will, G., Masciocchi, N., Parrish, W., and Hart, M., J. Appl. Crystallogr. 20, 394 (1987).Google Scholar
55.Armbruster, T., Lager, G.A., Ihringer, J., Rotella, F.J., and Jorgensen, J.D., Z. Kristallogr. 162, 8 (1983).Google Scholar
56.Krischner, H., Torkar, K., and Kolbesen, B.O., J. Solid State Chem. 3, 349 (1971).Google Scholar
57.Becker, K.D., Niemeier, D., Wissmann, S., Oversluizen, M., Couves, J.W., and Chadwick, A.V., Nucl. Instrum. Methods B 97, 111 (1995).CrossRefGoogle Scholar
58.Binsted, N., Greaves, G.N., and Henderson, C.M.B., Contrib. Mineral. Petrol. 89, 103 (1985).CrossRefGoogle Scholar
59.Farges, F. and Brown, G.E. Jr., Chem. Geol. 128, 93 (1996).CrossRefGoogle Scholar