Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-mkrr2 Total loading time: 0.28 Render date: 2021-04-11T13:19:18.934Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Constitutive modeling for strain rate-dependent behaviors of nanocrystalline materials based on dislocation density evolution and strain gradient

Published online by Cambridge University Press:  26 November 2014

Youyi Wu
Affiliation:
School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
Jianqiu Zhou
Affiliation:
School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China; and School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430070, China
Shuhong Dong
Affiliation:
School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
Aosheng Hu
Affiliation:
School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
Lu Wang
Affiliation:
School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
Xuming Pang
Affiliation:
School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
Corresponding
E-mail address:
Get access

Abstract

To evaluate the influence of strain rate on mechanical behavior of nanocrystalline (NC) materials, a phase mixture constitutive model composed of ordered grain interior phase and plastically softer grain boundary dislocation pile up zone phase was built. Because of dissimilar properties and mismatch between the two phases, dislocation density evolution controlling mechanism based on statistically stored dislocations and geometrically necessary dislocations was analyzed and extended to NC regime to consider their disparate effects. Based on the composite model, a new stress–strain constitutive relation for strain rate-dependent behaviors was firstly established based on dislocation density evolution and strain gradient theory. The calculated data were then compared with corresponding experimental curves and strong strain rate-dependent behaviors were exhibited, which indicated that the predictions kept in good agreement with experiments. Further discussions were presented for calculations of strain rate sensitivity and activation volume for NC Ni through the proposed model.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51(4), 427 (2006).CrossRefGoogle Scholar
Kumar, K.S., Van Swygenhoven, H., and Suresh, S.: Mechanical behavior of nanocrystalline metals and alloys11The Golden Jubilee Issue—Selected topics in Materials Science and Engineering: Past, Present and Future, edited by S. Suresh. Acta Mater. 51(19), 5743 (2003).CrossRefGoogle Scholar
Koch, C.C.: Structural nanocrystalline materials: An overview. J. Mater. Sci. 42(5), 1403 (2007).CrossRefGoogle Scholar
Dao, M., Lu, L., Asaro, R., Dehosson, J., and Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55(12), 4041 (2007).CrossRefGoogle Scholar
Liu, Y., Zhou, J., and Ling, X.: Impact of grain size distribution on the multiscale mechanical behavior of nanocrystalline materials. Mater. Sci. Eng., A 527(7–8), 1719 (2010).CrossRefGoogle Scholar
Koch, C.C.: Ductility in nanostructured and ultra fine-grained materials: Recent evidence for optimism. J. Metastable Nanocryst. Mater. 18, 9 (2002).CrossRefGoogle Scholar
Wang, Y.M., Wang, K., Pan, D., Lu, K., Hemker, K.J., and Ma, E.: Microsample tensile testing of nanocrystalline copper. Scr. Mater. 48(12), 1581 (2003).CrossRefGoogle Scholar
Weertman, J., Farkas, D., Hemker, K., Kung, H., Mayo, M., Mitra, R., and Swygenhoven, H.V.: Structure and mechanical behavior of bulk nanocrystalline materials. MRS Bull. 24(02), 44 (1999).CrossRefGoogle Scholar
Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., and Suresh, S.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51(17), 5159 (2003).CrossRefGoogle Scholar
Cheng, S., Ma, E., Wang, Y., Kecskes, L., Youssef, K., Koch, C., Trociewitz, U., and Han, K.: Tensile properties of in situ consolidated nanocrystalline Cu. Acta Mater. 53(5), 1521 (2005).CrossRefGoogle Scholar
Fleck, N.A., Muller, G.M., Ashby, M.F., and Hutchinson, J.W.: Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42(2), 475 (1994).CrossRefGoogle Scholar
Stölken, J. and Evans, A.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46(14), 5109 (1998).CrossRefGoogle Scholar
Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411 (1998).CrossRefGoogle Scholar
Saha, R., Xue, Z., Huang, Y., and Nix, W.D.: Indentation of a soft metal film on a hard substrate: Strain gradient hardening effects. J. Mech. Phys. Solids 49(9), 1997 (2001).CrossRefGoogle Scholar
Smyshlyaev, V. and Fleck, N.: The role of strain gradients in the grain size effect for polycrystals. J. Mech. Phys. Solids 44(4), 465 (1996).CrossRefGoogle Scholar
Ma, L., Zhou, J., Zhu, R., and Li, S.: Effects of strain gradient on the mechanical behaviors of nanocrystalline materials. Mater. Sci. Eng., A 507(1–2), 42 (2009).CrossRefGoogle Scholar
Hall, E.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc., London, Sect. B 64(9), 747 (1951).CrossRefGoogle Scholar
Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953).Google Scholar
Li, J.C.: Petch relation and grain boundary sources. Trans. Metall. Soc. AIME 227(1), 239 (1963).Google Scholar
Ashby, M.F.: The deformation of plastically non-homogeneous materials. Philos. Mag. 21(170), 399 (1970).CrossRefGoogle Scholar
Fougere, G., Weertman, J., Siegel, R., and Kim, S.: Grain-size dependent hardening and softening of nanocrystalline Cu and Pd. Scr. Metall. Mater. 26(12), 1879 (1992).CrossRefGoogle Scholar
Schuh, C., Nieh, T., and Yamasaki, T.: Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scr. Mater. 46(10), 735 (2002).CrossRefGoogle Scholar
Kumar, K.S., Suresh, S., Chisholm, M.F., Horton, J.A., and Wang, P.: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51(2), 387 (2003).CrossRefGoogle Scholar
Derlet, P. and Van Swygenhoven, H.: Length scale effects in the simulation of deformation properties of nanocrystalline metals. Scr. Mater. 47(11), 719 (2002).CrossRefGoogle Scholar
Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K., and Gleiter, H.: Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat. Mater. 1(1), 45 (2002).CrossRefGoogle Scholar
Hung, P., Sun, P., Yu, C., Kao, P., and Chang, C.: Inhomogeneous tensile deformation in ultrafine-grained aluminum. Scr. Mater. 53(6), 647 (2005).CrossRefGoogle Scholar
Capolungo, L., Jochum, C., Cherkaoui, M., and Qu, J.: Homogenization method for strength and inelastic behavior of nanocrystalline materials. Int. J. Plast. 21(1), 67 (2005).CrossRefGoogle Scholar
Follansbee, P.S. and Kocks, U.F.: A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall. 36(1), 81 (1988).CrossRefGoogle Scholar
Jia, D., Ramesh, K.T., and Ma, E.: Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron. Acta Mater. 51(12), 3495 (2003).CrossRefGoogle Scholar
Kim, H.S., Estrin, Y., and Bush, M.B.: Constitutive modelling of strength and plasticity of nanocrystalline metallic materials. Mater. Sci. Eng., A 316(1), 195 (2001).CrossRefGoogle Scholar
Shu, J.Y. and Fleck, N.A.: Strain gradient crystal plasticity: Size-dependent deformation of bicrystals. J. Mech. Phys. Solids 47(2), 297 (1999).CrossRefGoogle Scholar
Yamakov, V., Wolf, D., Phillpot, S., and Gleiter, H.: Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation. Acta Mater. 50(1), 61 (2002).CrossRefGoogle Scholar
Zhu, L. and Lu, J.: Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution. Int. J. Plast. 3031, 166 (2012).CrossRefGoogle Scholar
Zhou, J., Li, Z., Zhu, R., Li, Y., and Zhang, Z.: A mixtures-based model for the grain size dependent mechanical behavior of nanocrystalline materials. J. Mater. Process. Technol. 197(1–3), 325 (2008).CrossRefGoogle Scholar
Zhou, J., Zhu, R., and Zhang, Z.: A constitutive model for the mechanical behaviors of bcc and fcc nanocrystalline metals over a wide strain rate range. Mater. Sci. Eng., A 480(1–2), 419 (2008).CrossRefGoogle Scholar
Gao, C.Y. and Zhang, L.C.: Constitutive modelling of plasticity of fcc metals under extremely high strain rates. Int. J. Plast. 3233, 121 (2012).CrossRefGoogle Scholar
Gao, H., Huang, Y., Nix, W., and Hutchinson, J.: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47(6), 1239 (1999).CrossRefGoogle Scholar
Kocks, U. and Mecking, H.: Physics and phenomenology of strain hardening: The FCC case. Prog. Mater. Sci. 48(3), 171 (2003).CrossRefGoogle Scholar
Wu, X., Zhu, Y., Wei, Y., and Wei, Q.: Strong strain hardening in nanocrystalline nickel. Phys. Rev. Lett. 103(20), 205504 (2009).CrossRefGoogle ScholarPubMed
Dalla Torre, F., Van Swygenhoven, H., and Victoria, M.: Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater. 50(15), 3957 (2002).CrossRefGoogle Scholar
Wang, L., Zhou, J., Zhang, S., Liu, H., and Dong, S.: Effect of dislocation–GB interactions on crack blunting in nanocrystalline materials. Mater. Sci. Eng., A 592, 128 (2014).CrossRefGoogle Scholar
Zhu, R.T., Zhang, X.X., Li, Y.F., and Zhou, J.Q.: Impact behavior and constitutive model of nanocrystalline Ni under high strain rate loading. Mater. Des. 49, 426 (2013).CrossRefGoogle Scholar
Gu, C.D., Lian, J.S., Jiang, Q., and Zheng, W.T.: Experimental and modelling investigations on strain rate sensitivity of an electrodeposited 20 nm grain sized Ni. J. Phys. D: Appl. Phys. 40(23), 7440 (2007).CrossRefGoogle Scholar
Wang, Y.M. and Ma, E.: On the origin of ultrahigh cryogenic strength of nanocrystalline metals. Appl. Phys. Lett. 85(14), 2750 (2004).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 18
Total number of PDF views: 67 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 11th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Constitutive modeling for strain rate-dependent behaviors of nanocrystalline materials based on dislocation density evolution and strain gradient
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Constitutive modeling for strain rate-dependent behaviors of nanocrystalline materials based on dislocation density evolution and strain gradient
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Constitutive modeling for strain rate-dependent behaviors of nanocrystalline materials based on dislocation density evolution and strain gradient
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *