Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-64tqw Total loading time: 0.414 Render date: 2021-04-21T07:17:43.411Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Characterization of ion-beam mixed multilayers via grazing x-ray reflectometry

Published online by Cambridge University Press:  31 January 2011

M. G. Le Boité
Affiliation:
Centre de Spectrométrie Nucléaire et Spectrométrie de Masse, Batiment 108, BP1, 91406 Orsay, France
A. Traverse
Affiliation:
Centre de Spectrométrie Nucléaire et Spectrométrie de Masse, Batiment 108, BP1, 91406 Orsay, France
L. Névot
Affiliation:
Institut d'Optique, Batiment 503, BP43, 91406 Orsay, France
B. Pardo
Affiliation:
Institut d'Optique, Batiment 503, BP43, 91406 Orsay, France
J. Corno
Affiliation:
Institut d'Optique, Batiment 503, BP43, 91406 Orsay, France
Get access

Abstract

The grazing x-ray reflectrometry technique was used as a way to study modifications in metallic multilayers induced by ion-beam irradiation. Due to the high sensitivity of the technique, short-range atomic displacements of an atom A in a layer B can be detected so that the first stages of ion-beam mixing can be investigated. The rate of mixing is measured and the compound A1−xBx formed at the layers' interfaces is characterized.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below.

References

1Chang, L. L., Segmüller, A., and Esaki, L., Appl. Phys. Lett. 28, 39 (1976).CrossRefGoogle Scholar
2Pomerantz, M. and Segmuller, A., Thin Solid Films 68, 33 (1980).CrossRefGoogle Scholar
3Névot, L., Pardo, B., and Corno, J., Rev. Phys. Appl. 23(10) (in press).Google Scholar
4Wagendristel, A., Z. Naturforsch. 30a, 1648 (1975).Google Scholar
5Park, B., Spaepen, F., Poate, J. M., and Jacobson, D. C., Mater. Res. Soc. Symp. Proc. 74, 493 (1987).CrossRefGoogle Scholar
6Traverse, A., Boité, M. G. Le, Névot, L., Pardo, B., and Corno, J., Appl. Phys. Lett. 51, 1907 (1987).CrossRefGoogle Scholar
7Averback, R. S., Thompson, J. L., and Rehn, L. E., Mater. Res. Soc. Symp. Proc. 27, 25 (1984).CrossRefGoogle Scholar
8Chaumont, J., Lalu, F., Salome, M., Lamoise, A. M., and Bernas, H., Nucl. Instrum. Methods 189, 193 (1980).CrossRefGoogle Scholar
9Born, M. and Wolf, E., Principle of Optics (Pergamon, New York, 1965), 3rd revised ed., p. 51.Google Scholar
10Nevot, L. and Croce, P., Rev. Phys. Appl. 15, 761 (1980).CrossRefGoogle Scholar
11Pardo, B. and André, J. M., Rev. Phys. Appl. 23(10) (in press).Google Scholar
12Synthetic Modulated Structures, edited by Chang, L. L. and Giessen, B. C. (Academic, New York, 1985); Metallic Superlattices. Artificially Structured Materials, edited by T. Shinjo and T. Takada (Elsevier, New York, 1987).Google Scholar
13Bruijn, M. P., Chakralorty, P., Hessen, H. van, Verhoeven, J., Wiel, M. J. van der, and Bartels, W. J., SPIE 563, 182 (1985).Google Scholar
14Andersen, H. H. and Bay, H. L., in Topics in Applied Physics (Springer, New York, 1981), p. 145.Google Scholar
15Boité, M. G. Le, Traverse, A., Bernas, H., Janot, C., and Chevrier, J., Mater. Lett. 6, 173 (1988).CrossRefGoogle Scholar
16Traverse, A., Boité, M. G. Le, and Martin, G., Europhys. Lett. (submitted for publication).Google Scholar
17Boité, M. G. Le, Traverse, A., Névot, L., Pardo, B., and Corno, J., Nucl. Instrum. Methods B 29, 653 (1988).CrossRefGoogle Scholar
18Tsaur, B. Y., Lau, S. S., Hung, L. S., and Mayer, J. W., Nucl. Instrum. Methods 183/184, 67 (1981).CrossRefGoogle Scholar
19Hansen, M., Constitution of Binary Alloys (McGraw-Hill, New York, 1958).Google Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 18 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Characterization of ion-beam mixed multilayers via grazing x-ray reflectometry
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Characterization of ion-beam mixed multilayers via grazing x-ray reflectometry
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Characterization of ion-beam mixed multilayers via grazing x-ray reflectometry
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *